# 3D-CMCC-FEM (Coupled Model Carbon Cycle) # BioGeoChemical and Biophysical Forest Ecosystem Model *User's Guide* (v.5.5-ISIMIP) Website: www.forest-modelling-lab.com #### Forest Modelling Laboratory – National Research Council of Italy Institute for Agriculture and Forestry Systems in the Mediterranean (CNR–ISAFOM) Via della Madonna Alta, 128, 06128 Perugia (PG) Italy #### **University of Tuscia** Department for Innovation in Biological, Agro-food and Forest systems (UNITUS-DIBAF) Via S. Camillo de Lellis snc, 01100 Viterbo (VT) Italy User's Guide 3D-CMCC-FEM ## Lab. contacts (3d.cmcc.fem@gmail.com, forest.modelling.lab@gmail.com) #### Alessio Collalti (Lab. Head) ## alessio.collalti@cnr.it Institute for Agriculture and Forestry Systems in the Mediterranean of the National Research Council of Italy (CNR- Via della Madonna Alta, 128 - 06128 Perugia (PG) Italy c/o Department for innovation in biological, agro-food and forest systems (DIBAF) University of Tuscia Via S. Camillo de Lellis snc, 01100 Viterbo (VT) Italy #### Alessio Ribeca # <u>a.ri</u>beca@unitus.it Department for innovation in biological, agro-food and forest systems (DIBAF) University of Tuscia Via S. Camillo de Lellis snc, 01100 Viterbo (VT) Italy #### **Carlo Trotta** # $\times_{\text{trottacarlo@unitus.it}}$ Department for innovation in biological, agro-food and forest systems (DIBAF) University of Tuscia Via S. Camillo de Lellis snc, 01100 Viterbo (VT) Italy #### **Corrado Biondo** # $\times_{corrado.biondo@cmcc.it}$ Euro-Mediterranean Centre on Climate Changes (CMCC) Impacts on Agriculture, Forests and Ecosystem Services Division (IAFES) Viale Trieste 127, 01100 Viterbo (Italy) Department for innovation in biological, agro-food and forest systems (DIBAF) University of Tuscia Via S. Camillo de Lellis snc, 01100 Viterbo (VT) Italy #### **Daniela Dalmonech** ## daniela.dalmonech@gmail.com Friesenstrasse 5, Potsdam (Germany) 14482 #### Gina Marano ## ginamarano.forest@gmail.com ETH Zürich, Department of Environmental System Sciences, Chair of Forest Ecology Universitätstrasse 16, 8057 Zurich, Switzerland # Index | 1. Code availability | 4 | |------------------------------------------------------------|----| | 2. Model description | 5 | | 3. Referencing the 3D-CMCC-FEM v.5.5-ISIMIP | 5 | | 4. How to use the 3D-CMCC-FEM | 7 | | 4.1 Code characteristics | 7 | | 4.2 Eclipse usage instructions | 7 | | 4.3 How to increase Eclipse available heap size (optional) | 8 | | 4.6 How to work on Eclipse for bash scripts | 8 | | 4.7 3D-CMCC-FEM Usage | 8 | | 5. Run the model | 11 | | 6. Settings file | 12 | | 6.1 Initialization file | 14 | | 7. Parameterization file | 15 | | 8. Input files | 19 | | 8.1 Overview | 19 | | 8.2 Meteorological Data File | 19 | | 8.3 Soil file | 20 | | 8.4 Topo file | 22 | | 8.5 CO <sub>2</sub> file | 22 | | 9. Output files | 23 | | 9.1 Overview | 23 | | 9.2 Annual Outputs | 23 | | 10.Management | 31 | | 11.Questions or comments | 31 | # 1. Code availability The 3D-CMCC-FEM is primarily a research tool, and many versions have been developed for specific purposes. The National Research Council of Italy (namely, CNR) and University of Tuscia maintain benchmark code versions for public release and update these benchmark versions periodically as new knowledge is gained on the research front. The code and executables accompanying this file represent the most recent benchmark version. 3D-CMCC-FEM (Three Dimensional - Coupled Model Carbon Cycle - Forest Ecosystem Model) repository. The 3D-CMCC-FEM is freely available only for non-commercial use. We have developed the 3D-CMCC-FEM code relying solely on open source components, in order to facilitate its use and further development by others. The 3D-CMCC-FEM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. The 3D-CMCC-FEM code is released under the GNU General Public Licence (GPL). See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/gpl.html. This page contains all the code releases developed over the time on the open source distribution of the computer simulation forest model 3D-CMCC-FEM. The model has been developed and is maintained by the Forest Modelling Laboratory at the National Research Council of Italy, Institute for Agricultural and Forestry Systems in the Mediterranean (CNR-ISAFOM), Perugia, and at the University of Tuscia, Department of Innovation in Biological, Agro-food and Forest Systems (UNITUS-DIBAF), Viterbo. All source code and documents provided here are subject to copyright (c) by the CNR-ISAFOM and UNITUS-DIBAF. In case you have copied and/or modified the 3D-CMCC-FEM code overall, even in small parts of it, you may not publish data from it using the name 3D-CMCC-FEM or any 3D-CMCC-FEM variants unless you have either coordinated your usage and their changes with the developers listed below, or publish enough details about your changes so that they could be replicated. The 3D-CMCC-FEM has been developed by: Alessio Collalti, Alessio Ribeca, Carlo Trotta, Daniela Dalmonech and Gina Marano who are part of the Forest Ecology Laboratory at the National Research Council of Italy (CNR), Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFOM), Via della Madonna Alta, 128, 06128 - Perugia (PG), Italy, and Tuscia University (UNITUS), Department for innovation in biological, agro-food and forest systems (DIBAF), Via S. Camillo de Lellis, snc 01100 - Viterbo, Italy. CNR and UNITUS accept no responsibility for the use of the 3D-CMCC-FEM in the form supplied or as subsequently modified by third parties. CNR and UNITUS disclaims liability for all losses, damages and costs incurred by any person as a result of relying on this software. Use of this software assumes agreement to this condition of use. Removal of this statement violates the spirit in which 3D-CMCC-FEM was released by CNR and UNITUS. The 3D-CMCC-FEM (both versions: Light Use Efficiency and the fully BioGeoChemical version). Versions 5.5-ISIMIP code are open. You can get a free copy of the code online from: (GitHub Repository) <a href="https://github.com/Forest-Modelling-Lab/3D-CMCC-FEM">https://github.com/Forest-Modelling-Lab/3D-CMCC-FEM</a> # 2. Model description The 3D-CMCC-FEM model simulates the dynamics occurring in heterogeneous forests with different plant species, also composed by evergreen and deciduous, for different age, diameter and height classes. The model can reproduce forests with a complex canopy structure (i.e. constituted by cohorts competing for light and water resources). The model simulates carbon fluxes, in terms of gross and net primary productivity (GPP and NPP, respectively), partitioning and allocation in the main plant compartments (stem, branch, leaf, fruit, fine and coarse root, non-structural carbon). In the recent versions, nitrogen fluxes and allocation, in the same carbon pools, are also reproduced. The 3D-CMCC-FEM also takes into account management practices, as thinning and harvest, to predict their effects on forest growth and carbon sequestration. The 3D-CMCC-FEM is written in C-programming language and divided into several subroutines. To run the model, some input data are required. The meteorological forcing variables, on a daily time step, are represented by average, minimum and maximum air temperature, shortwave solar radiation, precipitation, vapor pressure deficit (or relative humidity). The model also needs some basic information about soil, such as soil depth and texture (clay, silt and sand fractions), as well as the forest stand information referred to plant species, ages, diameters, heights and stand density. An additional input is represented by species-specific eco-physiological data for the model parameterization. Copyright (c) 2020, Forest Modelling Laboratory – 3D-CMCC-FEM. All rights reserved. # 3. Referencing the 3D-CMCC-FEM v.5.5-ISIMIP If you use 3D-CMCC-FEM in your research, please include the following acknowledgment in the relevant manuscript: - "3D-CMCC-FEM, Version 5.x was provided by Alessio Collalti, from: - National Research Council of Italy, Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFOM) - University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems (DIBAF) Please also reference the following citation as the most recent and complete description of the current model version: #### v.4.0 (not more in use) - "Sviluppo di un modello dinamico ecologico-forestale per foreste a struttura complessa". A. Collalti, April 2011. University of Tuscia, <u>Ph.D. Thesis</u>, Ph.D. Advisor: Riccardo Valentini. DOI: 10.13140/RG.2.2.17900.92800.\_ - http://dspace.unitus.it/bitstream/2067/2398/1/acollalti\_tesid.pdf - "A process-based model to simulate growth and dynamics in forests with complex structure: evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy". A. Collalti, L. Perugini, T. Chiti, A. Nolè, G. Matteucci, R. Valentini. <a href="Ecological modeling"><u>Ecological modeling</u></a> 2014. <a href="https://doi.org/10.1016/j.ecolmodel.2013.09.016">https://doi.org/10.1016/j.ecolmodel.2013.09.016</a>. #### v.5.1.1 (not more in use) • "Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites". A. Collalti, S. Marconi, A. Ibrom, C. Trotta, A. Anav, E. D'Andrea, G. Matteucci, L. Montagnani, B. Gielen, I. Mammarella, T. Grünwald, A. Knohl, F. Berninger, Y. Zhao, R. Valentini and M. Santini, <u>Geosc. Model Dev.</u>, 9, 479-504, 2016. https://doi.org/10.5194/gmd-9-479-2016. #### v.PSM (not more in use) - "Assessing NEE and Carbon Dynamics among 5 European Forest types: Development and Validation of a new Phenology and Soil Carbon routines within the process oriented 3D-CMCC-Forest-Ecosystem Model", S. Marconi, Jan 2013, University of Tuscia, M.Sc. Thesis, M.Sc. Advisors: R. Valentini, T. Chiti, A. Collalti. DOI: 10.13140/RG.2.2.31762.91845 - "The Role of Respiration in Estimation of Net Carbon Cycle: Coupling Soil Carbon Dynamics and Canopy Turnover in a Novel Version of 3D-CMCC Forest Ecosystem Model". S. Marconi, T. Chiti, A. Nolè, R. Valentini and A. Collalti. Forests 2017. https://doi.org/10.3390/f8060220. #### v.5.3.3-ISIMIP - "Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate". Collalti A., Trotta C., Keenan T.F., Ibrom A., Lamberty B.B., Gröte R., Vicca S., Reyer C.P.O., Migliavacca M., Veroustraete F., Anav A., Campioli M., Scoccimarro E., Šigut L., Grieco E., Cescatti A., and Matteucci G. <u>Journal of Advances in Modelling Earth System</u> 2018. <a href="https://doi.org/10.1029/2018MS001275">https://doi.org/10.1029/2018MS001275</a>. - "Climate change mitigation by forests: a case study on the role of management on carbon dynamics of a pine forest in South Italy". Pellicone G., August 2018, University of Tuscia, Ph.D. Thesis, Ph.D. Advisors: G. Scarascia-Mugnozza, G. Matteucci, A. Collalti. DOI: 10.13140/RG.2.2.25155.96805 #### <u>v.5.3</u> "The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change". Collalti A., Thornton P.E., Cescatti A., Rita A., Borghetti M., Nolè A., Trotta C., Ciais P., Matteucci G. <u>Ecological</u> Applications 2018. https://doi.org/10.1002/eap.1837. #### <u>v.5.5</u> • "Plant respiration: Controlled by photosynthesis or biomass?" Collalti A., Tjoelker M.G., Hoch G., Mäkelä A., Guidolotti G., Heskel M., Petit G., Ryan M.G., Battipaglia G., Matteucci G., Prentice I.C. Global Change Biology 2020. https://doi.org/10.1111/qcb.14857 If you have made any significant modifications to the code, please mention them in your manuscript. This User's Guide is the only documentation released with 3D-CMCC-FEM. The code itself contains extensive internal documentation, and users with specific questions about the algorithms used to estimate particular processes should read the comments in the appropriate source code files. The file *treemodel.c* contains references to all the core science routines and is a good starting point for this kind of inquiry. The files *matrix.c* defines the data structures that are used to pass information between the process modules and includes both a short text description and the units for each internal variable. Shall you have questions about the code, appropriate model applications, possible programming errors, etc., please read this entire guide first, then feel free to contact us. ### 4. How to use the 3D-CMCC-FEM #### 4.1 Code characteristics 3D-CMCC-FEM is primarily developed on UNIX-Linux with Eclipse IDE Platforms and is compiled using GNU GCC 4.7.2. **IMPORTANT**: Be sure to execute 3D-CMCC-FEM on a Linux machine with architecture X86\_64 (64 bit), otherwise you firstly need to rebuild code to obtain the object files needed for runs. #### 4.2 Eclipse usage instructions To Run or to modify the model we suggest using Eclipse CDT simply following these steps (be sure if you choose to use Eclipse, to have installed Git and Egit and to have an internet connection): - 1) Save the 3D-CMCC-FEM Model (<a href="https://github.com/Forest-Modelling-Lab/3D-CMCC-FEM">https://github.com/Forest-Modelling-Lab/3D-CMCC-FEM</a>) directory in the path you are going to use as Eclipse Workspace; - 2) to prevent error from *netcdf* libraries, open terminal and type: - o \$ sudo apt-get install netcdf-bin - \$ sudo apt-get install libnetcdf-dev - 3) To make the model work under Eclipse CDT (any version) using Git follow these steps: - download from terminal Git and build-essential - \$ sudo apt-get install build-essential - \$ sudo apt-get install git - download from Ubuntu software center jre 7-8 or jdk (if not installed) - \$ sudo apt-get install default-jdk - 4) Download from Eclipse site the most recent version of Eclipse IDE for C/C++ Developers (https://www.eclipse.org/downloads/packages/) - 5) Open Eclipse and set your Workspace as the same path in which you've placed the Model's folder to do so click on File, then "switch Workspace" and click on "Other..."; here input your current path; - 6) File -> Import -> Git -> Projects from Git -> Clone Url and in URL please paste the code version you find over the GitHub <a href="https://github.com/Forest-Modelling-Lab/3D-CMCC-">https://github.com/Forest-Modelling-Lab/3D-CMCC-</a> #### <u>FEM</u> For NETCDF file you need to add libraries within eclipse through: Project->Properties->C/C++ Build->Settings->Cross G++ Linker->Libraries-> in Libraries (-I) add "netcdf"->OK #### 4.3 How to increase Eclipse available heap size (optional) Some JVMs put restrictions on the total amount of memory available on the heap. If you are getting *OutOfMemoryErrors* while running Eclipse, the VM can be told to let the heap grow to a larger amount by passing the -vmargs command to the Eclipse launcher (<a href="http://wiki.eclipse.org/FAQ">http://wiki.eclipse.org/FAQ</a> How do I increase the heap size available to Eclipse%3F). Here follows a short how to: - 1) Search for the location of your *eclipse.ini* file (usually *usr/lib/eclipse*); - 2) Open eclipse.ini using gedit command from terminal as super user (sudo gedit eclipse.ini); - 3) BE EXTREMELY CAREFUL TO FOLLOW ECLIPSE DEVELOPERS RULES - Each option and each argument to an option must be on its own line. - All lines after -vmargs are passed as arguments to the JVM, so all arguments and options for eclipse must be specified before -vmargs (just like when you use arguments on the command-line). - Any use of -vmargs on the command-line replaces all -vmargs settings in the .ini file unless launcher .appendVmargs is specified either in the .ini file or on the command-line. (doc). - 4) in line 12 change -Xms40m into -Xms512m (just replace 40 with 512 without changing the rest of the line). - 5) in line 13 change -Xmx256m into -Xmx1024m (just replace 256 with 11024 without changing the rest of the line) - 6) save eclipse.ini and restart eclipse. #### 4.6 How to work on Eclipse for bash scripts To work in Bash Shell scripts within the Eclipse IDE you need to install ShellED eclipse package through the web. #### 4.7 3D-CMCC-FEM Usage 3D-CMCC-FEM is a command line program, and its behavior is controlled by several command line options: | -i input path | i.e.: -i c:\input\directory\ | |----------------|-------------------------------| | -o output path | i.e.: -o c:\output\directory\ | | -p parameterization directory | i.e.: -i c:\parameterization\directory\ | |---------------------------------------------------|-----------------------------------------| | -d dataset filename stored into input directory | i.e.: -d input.txt | | -m met filename list stored into input directory | i.e.: -m 1999.txt, 2003.txt, 2009.txt | | -s soil filename stored into input directory | i.e.: -s soil.txt or soil.nc | | -t topo filename stored into input directory | i.e.: -t topo.txt or topo.nc | | -c settings filename stored into input directory | i.e.: -c settings.txt | | -k CO <sub>2</sub> atmospheric concentration file | i.e.: -k co2_conc.txt | | -n ndep file | i.e.: -n ndep.txt | | -r output vars list | i.e.: -r output_vars.lst | | -u benchmark path | (for model developers) | | -h | print this help | | | | # More specifically: | -i | this is not a mandatory parameter. if not used, input files will be searched where program is. | |-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | -0 | this is not a mandatory parameter. If not used, output files will be created where program is. | | -р | this is not a mandatory parameter. If not used, parameterization file will be searched where program is. | | -d "stand" mandatory parameter | This file will be searched in input path, if specified. It can be an ASCII or NETCDF file. You can use '//' for comment it. ASCII file must have following header, separated by a comma: | | <u>, , , , , , , , , , , , , , , , , , , </u> | Vear v. v. Age Species Management N. Stool AVDRH Height Lai | Year, x, y, Age, Species, Management, N, Stool, AvDBH, Height, Lai Please see [SPECIES]\* section and [MANAGEMENT]\*\* section to check allowed values. Same columns name applies to variables name in NETCDF version of file. #### -m "meteo" This file will be searched in input path, if specified. It can be an ASCII or NETCDF file. You can specify a .lst ( list ) file if you have separated values. #### mandatory parameter List file must contain the name of NETCDF files to import, one row for variable i.e.: 6\_WS\_f\_2000\_2001\_123\_456.nc 6\_TOT\_PREC\_2000\_2001\_123\_456.nc 6\_SWC\_2000\_2001\_123\_456.nc 6\_TMAX\_2M\_2000\_2001\_123\_456.nc 6\_TMIN\_2M\_2000\_2001\_123\_456.nc 6\_TSOIL\_2000\_2001\_123\_456.nc 6\_VPD\_2000\_2001\_123\_456.nc 6\_ET\_2000\_2001\_123\_456.nc 6\_LAI\_2000\_2001\_123\_456.nc 6\_RADS\_2000\_2001\_123\_456.nc ASCII file must have following header, separated by a tab (/t): Year Month n\_days Rg\_f Ta\_f Tmax Tmin Rh\_f Ts\_f Precip SWC LAI ET WS\_f Same columns name applies to variables name in NETCDF version of file. #### -s "soil" This file will be searched in input path, if specified. It can be an ASCII or NETCDF file. ASCII file must have following header, separated by a comma: #### mandatory parameter X,Y,LANDUSE,LAT,LON,CLAY\_PERC,SILT\_PERC, SAND\_PERC,SOIL\_DEPTH,FR,FN0,FNN,M0,LITTERC, LITTERN,SOILC,SOILN,DEADWOODC Please see [LANDUSE] section to check allowed values. Same columns name applies to variables name in NETCDF version of file. #### -t "topography" mandatory parameter This file will be searched in input path, if specified. It can be an ASCII or NETCDF file. ASCII file must have following header, separated by a comma: X,Y,ELEV Same columns name applies to variables name in NETCDF version of file. #### -c "model setting" mandatory parameter This file will be searched in input path, if specified. It must be an ASCII file. You can put comment using '//' token; The file must contain the rows descripted in the "Settings file" section. # -k "atmospheric CO2" concentration" mandatory mandatory parameter only if CO2\_trans in settings file is setted on 'on' or 'var' This file will be searched in input path, if specified. It must be an ASCII file and must have following header, separated by a tab (/t): year CO2\_ppm -n "*nitrogen* deposition" mandatory parameter only if Ndep\_fixed in settings file is setted on 'off' This file will be searched in input path, if specified. It must be an ASCII file and must have following header, separated by a tab (/t): year ndep **-r** Use it if you want export variables values inside a NETCDF file. not mandatory You can specify more variables per row using a comma as delimiter. Each variable must have "daily\_", "monthly\_" or "annual\_" prefix. i.e.: daily\_gpp, annual\_GPP daily\_ar monthly\_ar annual\_npp In previous example, daily values for GPP and AR are exported. Monthly values for AR are exported and annual values for GPP and NPP are exported. Files will be created in output path if any or where program is. #### [SPECIES]\* Following species can be used on relative column inside an ASCII dataset (without indexes) Please note that you must use their indexes if you use a NETCDF file. 0,Fagussylvatica 1,Castaneasativa 2,Larixdecidua 3,Piceaabies 4, Pinussylvestris 5, Quercuscerris 6,Quercusilex 7,Quercusrobur 8, quercus\_deciduous 9,quercus\_evergreen #### [MANAGEMENT]\*\* Following type of management can be used on relative column inside as ASCII dataset (without indexes). Please note that you must use their indexes if you use a NETCDF file. T is for timber C is for coppice (under development) 0,T 1,C #### [LANDUSE]\*\*\* Following type of landuse can be used on relative column inside as ASCII dataset (without indexes). Please note that you must use their indexes if you use a NETCDF file. F is for forest Z is for crop (currently not implemented) 0,F 1,Z ## 5. Run the model Be sure to set the right arguments passed to the project and go into bin directory: cd bin Run executable with default parameters: 3D-CMCC-Forest-Model -i input -o output -p parameterization -d sitename\_stand.txt -m sitename\_meteo\_firstyear.txt -s sitename\_soil.txt -t sitename\_topo.txt -c sitename\_settings.txt -k CO2\_hist.txt > log.txt # 6. Settings file ``` File Modifica Formato Visualizza? SITENAME sitename| VERSION f SPATIAL u TIME d SPINUP off SPINUP off SPINUP off SPINUP off DAILY_OUTPUT off DAILY_OUTPUT off ANNUAL_OUTPUT off NETCDF_OUTPUT off NETCDF_OUTPUT off NETCR_START 2000 YEAR_END 2008 YEAR_END 2008 YEAR_END 2008 VEAR_END 2 ``` Example of settings file The file "sitename\_settings.txt" permits to set the model run, choosing: | SITENAME | Name of site | | | | | |----------------|-----------------------------------------------------------------------------|--|--|--|--| | VERSION | Must be 'f' for FEM version or 'b', for BGC version for FOREST LANDUSE | | | | | | SPATIAL | Must be 's' or 'u', spatial or un-spatial | | | | | | TIME | Must be 'm' or 'd', monthly or daily | | | | | | SPINUP | Must be 'on' or 'off' | | | | | | SPINUP_YEARS | Number of years for spin-up (under development) | | | | | | SCREEN_OUTPUT | Must be 'on' or 'off' | | | | | | DEBUG_OUTPUT | Must be 'on' or 'off' | | | | | | DAILY_OUTPUT | Must be 'on' or 'off' | | | | | | MONTHLY_OUTPUT | Must be 'on' or 'off' | | | | | | ANNUAL_OUTPUT | Must be 'on' or 'off' | | | | | | SOIL_OUTPUT | Must be 'on' or 'off' | | | | | | NETCDF_OUTPUT | Must be 'off' | | | | | | YEAR_START | Starting year simulation | | | | | | YEAR_END | Ending year simulation | | | | | | YEAR_RESTART | Year to restart. Must be 'off' | | | | | | PSN_mod | Must be '0' (FvCB version) or '1' (LUE version) for photosynthesis approach | | | | | CO2\_trans Must be 'on' or 'off' YEAR\_START\_CO2\_FIXED -9999 . When Co2\_trans = var, year at which fix [CO2] **Ndep\_fixed** Must be 'on' or 'off' (under development) Photo\_accl Photosynthesis temperature acclimation Must be 'on' or 'off' **Resp\_accl** Q10 temperature acclimation. Must be 'on' or 'off' regeneration Must be 'on' or 'off' management Must be 'on' or 'off' YEAR\_START\_MANAGEMENT First year of management **Progn\_Aut\_Resp** Prognostic autotrophic respiration. Must be 'on' or 'off', if off Y values are used **SIZECELL** Its value must be within 10 and 100 (unity measure is meter: $10 = 10x10 = 100m^{-1}$ <sup>2</sup>2) Y 0.48 Fixed\_Aut\_Resp\_rate Assimilate use efficiency-Respiration rate-GPP/NPP CO2CONC 368.865 CO2 concentration refers to 2000 as ISIMIP PROTOCOL CO2\_INCR 0.01 1% increment INIT\_FRAC\_MAXASW 1 0.1 Minimum fraction of asw based on maxasw (wilting point) (unchanged) TREE\_LAYER\_LIMIT Define differences among tree heights in meters classes to d define number of layers in un-spatial version **SOIL\_LAYER** Define soil layer/s to consider **THINNING\_REGIME** Thinning regime (Above or Below) **REPLANTED\_SPECIES** Species name of replanted trees (mandatory) **REPLANTED\_MANAGEMENT** (T) management of replanted trees (should be only T) (mandatory) **REPLANTED\_TREE** Number of replanted trees (mandatory) **REPLANTED\_AGE** (yr) age of replanted trees (mandatory) **REPLANTED\_AVDBH** (cm) average dbh of replanted trees (mandatory) **REPLANTED\_LAI** (m<sup>2</sup>m<sup>-2</sup>) LAI for replanted trees (mandatory for evergreen useless for deciduous) **REPLANTED\_HEIGHT** (m) height of replanted trees (mandatory) **REPLANTED\_WS** (tDM ha<sup>-1</sup>) stem biomass of replanted trees (optional) **REPLANTED\_WCR** (tDM ha<sup>-1</sup>) coarse root biomass of replanted trees (optional) **REPLANTED\_WFR** (tDM ha<sup>-1</sup>) fine root biomass of replanted trees (optional) **REPLANTED\_WL** (tDM ha<sup>-1</sup>) leaf biomass of replanted trees (optional for evergreen if LAI!= 0, otherwise useless) **REPLANTED\_WBB** (tDM ha<sup>-1</sup>) branch biomass of replanted trees (optional) **REGENERATION\_SPECIES none** NOT USED it comes from species that produces seeds **REGENERATION\_MANAGEMENT** (T) management of replanted trees (should be only T) (mandatory) **REGENERATION\_N\_TREE -9999** number of replanted trees (mandatory) (NOT USED) **REGENERATION\_AGE 1** (yr) age of regeneration trees (mandatory) (SHOULD BE ALWAYS 1) **REGENERATION\_AVDBH** (cm) average dbh of regeneration trees (mandatory) **REGENERATION\_LAI 0.0** (m<sup>2</sup>m<sup>-2</sup>) LAI for regeneration trees (mandatory for evergreen, useless for deciduous) **REGENERATION\_HEIGHT** (m) height of replanted trees (mandatory) **REGENERATION\_WS 0.0** (tDM ha<sup>-1</sup>) stem biomass of regeneration trees (optional) **REGENERATION\_WCR 0.0** (tDM/ha) coarse root biomass of regeneration trees (optional) **REGENERATION\_WFR 0.0** (tDM ha<sup>-1</sup>) fine root biomass of regeneration trees (optional) **REGENERATION\_WL 0.0** (tDM ha<sup>-1</sup>) leaf biomass of regeneration trees (optional for evergreen if LA!!= 0, otherwise useless) **REGENERATION\_WBB** (tDM ha<sup>-1</sup>) branch biomass of regeneration trees (optional) **PRUNING** Must be 'on' or 'off' **IRRIGATION** Must be 'on' or 'off' #### 6.1 Initialization file Example of stand file The first required input file is called the "*sitename\_stand.txt*". It provides information about the stand conditions. Example for a cell resolution of $10 \times 10$ meters cell X = 0, Y = 0: #### Year,x,y,Age,Species,Management,N,Stool,AvDBH,Height,Wf,Wrc,Wrf,Ws,Wbb,Wres,Lai 1997,0,0,16,Piceaabies,T,2408,0,7.11,5.63139534883721,0,0,0,0,0,0,-9999 2015,0,0,34,Piceaabies,T,1252,0,19.51,14.2332268370607,0,0,0,0,0,0,-9999 The text file must be created following this logic architecture - for each tree height class define the number of age classes and their values - -- for each height->dbh class - --- for each height->dbh->age class ---- for each height->dbh->age->species class define its state variables: - **Year**: Reference year - **X,Y**: 0,0 - Age: Age of trees (years) - **Species**: Name of specie - **Management**: (T = timber, C = coppice) - N: N of trees per area for that class (Num tree cell size-1) - **Stool**: N of stool per area (if Management is set to C) (Num tree cell size<sup>-1</sup>) - AvDBH: Average diameter at breast height (cm) for that class - **Height**: Tree height (m) for that class - **Wf**: 0.0 (foliage biomass in tDM ha<sup>-1</sup>) for that class - Wrc: 0.0 (coarse root biomass in tDM ha<sup>-1</sup>) for that class - **Wrf**: 0.0 (fine root biomass in tDM ha<sup>-1</sup>) for that class - **Ws**: 0.0 (stem biomass in tDM ha<sup>-1</sup>) for that class - **Wbb**: 0.0 (branch and bark biomass in tDM ha<sup>-1</sup>) for that class - **Wres**: 0.0 (reserve in tDM ha<sup>-1</sup>) for that class - Lai: Leaf area index (m<sup>2</sup> m<sup>-2</sup>) for that class ## 7. Parameterization file The parameterization file is the species eco-physiological constants file, named with specie to simulate (e.g." Fagussylvatica.txt"). Comments are allowed in the parameter file. Comments can appear almost anywhere, must begin with two forward slash characters '//', at the end of the line. Example parameter files are provided. Parameter definition and its value must be separated by one-tab character. It contains the following parameters: Light Tolerance 4 = very shade intolerant (canopy coverage = 90%), 3 = shade intolerant (canopy coverage 100%), 2 = shade tolerant (canopy coverage = 110%), 1 = very shade tolerant (canopy coverage = 120%) **PHENOLOGY** 0.1 = deciduous broadleaf, 0.2 = deciduous needle leaf, 1.1 = broad leaf evergreen, 1.2 = needle leaf evergreen **ALPHA** Canopy quantum efficiency (molC molPAR<sup>-1</sup>) **EPSILONgCMJ** Light Use Efficiency (gC MJ<sup>-1</sup>) (used if ALPHA is not available) **K** Extinction coefficient for absorption of PAR by canopy **ALBEDO** Canopy albedo INT\_COEFF Precipitation interception coefficient **SLA\_AVGO** Average Specific Leaf Area m² KgC¹ for sunlit/shaded leaves (juvenile) **SLA\_AVG1** Average Specific Leaf Area $m^2$ KgC<sup>1</sup> for sunlit/shaded leaves (mature) **TSLA** Age at which $SLA\_AVG = (SLA\_AVG1 + SLA\_AVG0)/2$ **SLA\_RATIO** (DIM) ratio of shaded to sunlit projected SLA LAI\_RATIO (DIM) all-sided to projected leaf area ratio **FRACBBO** Branch and Bark fraction at age 0 (m<sup>2</sup> Kg<sup>-1</sup>) **FRACBB1** Branch and Bark fraction for mature stands (m<sup>2</sup> Kg<sup>-1</sup>) TBB Age at which fracBB = (FRACBB0 + FRACBB1)/2 **RHOO** Minimum Basic Density for young Trees (tDM m<sup>-3</sup>) **RHO1** Maximum Basic Density for mature Trees (tDM m<sup>-3</sup>) **TRHO** Age at which rho = (RHOMIN + RHOMAX)/2 **FORM\_FACTOR** Stem form factor (adim) **COEFFCOND** Define stomatal response to VPD in m sec<sup>-1</sup> **BLCOND** Canopy Boundary Layer conductance m sec<sup>-1</sup> **MAXCOND** Maximum Leaf Conductance in m sec<sup>-1</sup> **CUTCOND** Cuticular conductance in m sec<sup>-1</sup> MAXAGE Maximum tree age (years) **RAGE** Relative Age to give fAGE = 0.5 **NAGE** Power of relative Age in function for Age **GROWTHTMIN** Minimum temperature for growth °C **GROWTHTMAX** Maximum temperature for growth °C **GROWTHTOPT** Optimum temperature for growth °C **GROWTHSTART** Thermic sum value for starting growth in °C MINDAYLENGTH Minimum day length for phenology (days) **SWPOPEN** Soil water potential open (MPa) **SWPCLOSE** Soil water potential close (MPa) **OMEGA\_CTEM** Allocation parameter control the sensitivity of allocation to changes in water and light availability **SOCTEM** Parameter controlling allocation to stem **ROCTEM** Parameter controlling allocation to root **FOCTEM** Parameter controlling allocation to foliage FRUIT\_PERC %age of npp to fruit **CONES\_LIFE\_SPAN** Life span for cones (years) FINE\_ROOT\_LEAF Allocation new fine root C:new leaf (ratio) STEM\_LEAF Allocation new stem C:new leaf (ratio) **COARSE\_ROOT\_STEM** Allocation new coarse root C:new stem (ratio) LIVE\_TOTAL\_WOOD Allocation new live wood C:new total wood C (ratio) **N\_RUBISCO** Fraction of leaf N in Rubisco (ratio) **CN\_LEAVES** CN of leaves (kgC kgN<sup>-1</sup>) **CN\_FALLING\_LEAVES** CN of leaf litter (kgC kgN<sup>-1</sup>) **CN\_FINE\_ROOTS** CN of fine roots (kgC kgN<sup>-1</sup>) **CN\_LIVEWOODS** CN of live woods (kgC kgN<sup>-1</sup>) **CN\_DEADWOOD** CN of dead woods (kgC kgN<sup>-1</sup>) **LEAF\_LITT\_LAB\_FRAC** leaf litter labile fraction (dimension lees) **LEAF\_LITT\_CEL\_FRAC** leaf litter cellulose fraction (dimension lees) **LEAF\_LITT\_LIGN\_FRAC** leaf litter lignin fraction (dimension lees) **FROOT\_LITT\_LAB\_FRAC** fine root litter labile fraction (dimension lees) **FROOT\_LITT\_CEL\_FRAC** fine root litter cellulose fraction (dimension lees) FROOT\_LITT\_LIGN\_FRAC fine root litter lignin fraction (dimension lees) **DEADWOOD\_CEL\_FRAC** dead wood litter cellulose fraction (dimension lees) **DEADWOOD\_LIGN\_FRAC** dead wood litter lignin fraction (dimension lees) **BUD\_BURST** Days of bud burst at the beginning of growing season (only for deciduous) (days) **LEAF\_FALL\_FRAC\_GROWING** Proportions of the growing season of leaf fall **LEAF\_FINEROOT\_TURNOVER** Average yearly leaves and fine root turnover rate LIVEWOOD\_TURNOVER Annual yearly live wood turnover rate **SAPWOOD\_TURNOVER** Annual yearly live wood turnover rate **DBHDCMAX** Maximum dbh crown diameter relationship when minimum density **DBHDCMIN** Minimum dbh crown diameter relationship when maximum density SAP\_A a coefficient for sapwood SAP\_B b coefficient for sapwood **SAP\_LEAF** sapwood\_max leaf area ratio in pipe model ( $m^2 m^{-2}$ ) SAP\_WRES Sapwood-Reserve biomass ratio used if no Wres data are available **STEMCONST\_P** Constant in the stem mass vs. diameter relationship **STEMPOWER\_P** Power in the stem mass vs. diameter relationship CRA Chapman-Richards a parameter (maximum height, meter) **CRB** Chapman-Richards b parameter **CRC** Chapman-Richards c parameter **HDMAX\_A** A parameter for Height (m) to Base diameter (m) ratio MAX **HDMAX\_B**B parameter for Height (m) to Base diameter (m) ratio MAX **HDMIN\_A** A parameter for Height (m) to Base diameter (m) ratio MIN **HDMIN\_B**B parameter for Height (m) to Base diameter (m) ratio MIN **CROWN\_FORM\_FACTOR** Crown form factor (0 = cylinder, 1 = cone, 2 = sphere, 3 = ellipsoid) **CROWN\_A** Crown a parameter **CROWN\_B** Crown b parameter MAXSEED Maximum seeds number (see TREEMIG) MASTSEED Masting year (see TREEMIG) **WEIGHTSEED** Single fruit weight in g **SEXAGE** Age for sexual maturity GERMCAPACITY Geminability rate (%) **ROTATION** Rotation for final harvest (based on tree age) **THINNING** Thinning regime (based on year simulation) **THINNING\_REGIME** Thinning regime (0 = above, 1 = below) **THINNING\_INTENSITY** Thinning intensity (% of Basal Area/N-tree to remove) # 8. Input files #### 8.1 Overview The 3D-CMCC-FEM model uses at least six input files, <u>meteo</u>, <u>soil</u>, <u>topo</u>, <u>CO</u><sub>2</sub> and <u>management</u> each time it is executed. A brief description of all files is given first, followed by detailed discussions of each file. #### 8.2 Meteorological Data File Example of meteo file The second required input file is the meteorological data file, which is named using the start year of simulation (e.g. "*sitename\_meteo\_2000.txt*"), containing the daily meteorological data. Years of simulation depends on the number years included in the met file. Some met data are mandatory: temperature, precipitation, vapor pressure deficit (or relative humidity) and short-wave solar radiation, whereas others are optional. If the model runs in "spatial version" daily or monthly LAI values are mandatory otherwise they are not considered in processes. Each variable must be separated by one-tab character. Model considers leap years, so 29th of February has to be included. Example for year 2007-200x in daily/un-spatial version: | Year<br>ET WS_f | Month | n_days | Rg_f | Ta_f | Tmax | Tmin | VPD_f | Ts_f | Precip | SWC | LAI | |-----------------|-------|--------|------|-------|------|------|-------|------|--------|-------|-----| | 2007 | 1 | 1 | 5.1 | -9999 | 13.1 | 7.1 | 0.2 | 7.8 | 1 | -9999 | 0 | | 3D-CMCC-FEM | | | | | | | | User | User's Guide | | | |-------------|---|---|-----------|------|-----|-----|-----|------|--------------|---|--| | 2007 | 1 | 2 | 6.1 -9999 | 10.4 | 5.8 | 0.2 | 6.3 | 0.2 | 0.27 | 0 | | | 2007 | 1 | 3 | 6.1 -9999 | 9.9 | 3.1 | 0.2 | 3.3 | 0 | 0.39 | 0 | | | 2007 | 1 | 4 | 6.1 -9999 | 10 | 1.9 | 0.2 | 0.5 | 0 | 0.2 | 0 | | | | | | | | | | | | | | | Variables: - **Rg\_f**: Mean daily global radiation (MJ m<sup>-2</sup>day<sup>-1</sup>) - **Ta\_f**: Daily average temperature (°C) - **Tmax:** Daily Maximum temperature (°C) - **Tmin:** Daily Minimum temperature (°C) - VPD\_f or RH\_f: Daily Vapor Pressure Deficit (mbar-hPa) or Relative Humidity (%) - Ts\_f: Daily Soil temperature (°C) - **Precip**: Cumulated daily precipitation (mm day<sup>-1</sup>) - **SWC**: Soil water content (mm m<sup>-2</sup>) - LAI: Leaf area Index (m<sup>2</sup> m<sup>-2</sup>) (Only inspatial version) - ET: Evapotranspiration (mm m<sup>-2</sup> day<sup>-1</sup>) - WS\_f: Windspeed (m sec<sup>-1</sup>) *NO DATA = -9999* #### 8.3 Soil file Example of soil file The fourth required input file is "*sitename\_soil.txt*". It contains information about soil and fertility of the test site. Comments are allowed in the parameter file. Comments can appear almost anywhere, must begin with two forward slash characters '//', at the end of the line. Example parameter files are provided. In general, the format of parameters file is one parameter per line, with the parameter name being enclosed in double quotes, with a tab character separating the parameter name and its value. <u>IMPORTANT</u>: Values are referred to the *SIZECELL* dimensions specified in the setting.txt file (e.g. if SIZECELL = 100 meters -> tC ha<sup>-1</sup>). It contains the following parameters: X,Y,LANDUSE,LAT,LON,CLAY\_PERC,SILT\_PERC,SAND\_PERC,SOIL\_DEPTH,FR,FN0,FNN,M,LITTERC, LITTERN,SOILC,SOILN,DEADWOODC 0,0,F,49.3,18.32,20.63,20.63,58.74,80,0.65,0.5,0.5,0.2,-9999,-9999,-9999,-9999 - **LANDUSE**: see the 'LANDUSE' section - LAT: Latitude (°) - LON: Longitude (°) - CLAY\_PERC: Soil clay (%) - **SILT\_PERC**: Soil silt (%) - **SAND\_PERC**: Soil sand (%) - **SOIL\_DEPTH**: Soil depth (cm) - **FR**: Fertility rating (dim) - **FNO**: Value of fertility modifier when FR=0 (dim) - **FNN**: Power of (1-FR) in fertility modifier (dim) - **M0**: Value of 'm' when FR=0 (dim) - **LITTERC**: Litter carbon - **LITTERN**: Litter nitrogen - **SOILC**: Soil carbon - **SOILN**: Soil nitrogen - **DEADWOODC**: Dead wood carbon #### 8.4 Topo file Example of topo file The fifth required input file is "*sitename\_topo.txt*". It contains information about topography of the test site. Comments are allowed in the parameter file. Comments can appear almost anywhere, must begin with two forward slash characters '//', at the end of the line. Example parameter files are provided. In general, the format of parameters file is one parameter per line, with the parameter name being enclosed in double quotes, with a tab character separating the parameter name and its value. It contains the following parameters: - **X**: 0 **Y**: 0 - **ELEV**: Elevation from ancillary data (m) #### 8.5 CO2 file Example of CO<sub>2</sub> file # 9. Output files #### 9.1 Overview For each simulation the Model creates or rewrites into the output folder a file named "output.txt". In this folder 4 other subfolders based on time scale should created. These files contain every result for debug (if necessary) daily, monthly and annual simulations. It is also useful to check which model functions have been used. These results can be obtained at stand level or for each type of class level (layer, dbh, age or species class) on Unix like platforms, if you need to extrapolate a variable it is advised to use the "grep" tool. E.g. open a terminal into the output folder and for the variable NPP type: "cat output.txt | grep 'Stand NPP' " if you want to see grep output into terminal; "cat output.txt | grep 'Stand NPP' > NPP.txt" if you want to redirect grep output into an NPP file inside the output folder IMPORTANT: be sure to use the correct declaration of the output as grep parameter. #### 9.2 Annual Outputs <u>At class level</u>: YEAR Year of simulation LAYER Layer of tree class HEIGHT Average height of a species (m) DBH Average diameter at breast height of a species (cm) AGE Age of trees (years) SPECIES Tree Species MANAGEMENT T = Timber GPP Yearly Gross Primary Production (gC m<sup>-2</sup> year<sup>-1</sup>) GPP\_SUN:GPP Yearly Gross Primary Production for sun leaves (gC m<sup>-2</sup> year<sup>1</sup>) GPP\_SHADE:GPP Yearly Gross Primary Production for shaded leaves (gC m<sup>-2</sup> year<sup>1</sup>) Av\_SUN:A\_SUN Carboxylation rate/Final assimilation rate ratio for sun leaves Aj\_SUN:A\_SUNRuBP regeneration/Final assimilation rate ratio for sun leavesAv\_SHADE:A\_SHADECarboxylation rate/Final assimilation rate ratio for shaded leavesAj\_SHADE:A\_SHADERuBP regeneration/Final assimilation rate ratio for shaded leaves Av\_TOT:A\_TOT Carboxylation rate/Final assimilation rate ratio Aj TOT:A TOT RuBP regeneration/Final assimilation rate ratio GR Growth respiration (gC m<sup>-2</sup> year<sup>1</sup>) MR Maintenance Respiration (gC m<sup>-2</sup> year<sup>1</sup>) RA Autotrophic respiration (gC m<sup>-2</sup> year<sup>1</sup>) NPP Net Primary Production (gC m<sup>-2</sup> year<sup>1</sup>) BP Yearly Biomass Production (gC m<sup>-2</sup> year<sup>1</sup>) reser as diff - ResAllocAnnual reserve allocated (tNSC cell $^{-1}$ year $^{-1}$ )ResDepleAnnual reserve depleted (tNSC cell $^{-1}$ year $^{-1}$ )ResUsageAnnual reserve used (tNSC cell $^{-1}$ year $^{-1}$ ) BP/NPP Biomass productivity vs. Net Primary Production ResAlloc/NPP Annual reserve allocated vs. Net Primary Production ResAlloc/BP Annual reserve allocated vs. Biomass productivity ResDeple/NPP Annual reserve depleted vs. Net Primary Production ResDeple/BP Annual reserve depleted vs. Biomass productivity ResUsage/NPP Annual reserve used vs. Net Primary Production ResUsage/BP Annual reserve used vs. Biomass productivity CUE Annual Carbon Use Efficiency (qC NPP qC GPP-1) **BPE** Biomass Production Efficiency (qC BP qC GPP<sup>-1</sup>) diffCUE-BPE CUE - BPE Y(PERC) RA/GPP \* 100 PeakLAI Peak LAI (maximum attainable LAI) (m²m⁻²) MaxLAI Maximum of LAI (maximum reached LAI) (m²m⁻²) SLA Specific Leaf Area (m²Kg⁻¹) SAPWOOD\_AREA Tree sapwood area (cm²) CC-Proj Projected Canopy Cover (frac) DBHDC DBH/Crown diameter relationship CROWN DIAMETER Crown Projected Diameter (m) CROWN HEIGHT Crown Height (m) CROWN AREA PROJ Crown Projected Area (at zenith angle) (m<sup>2</sup>) APAR Absorbed Photosynthetically Active Radiation (molPARm<sup>-2</sup>year<sup>-1</sup>) LIVETREE Number of live trees (ntree cell-1) DEADTREE Number of dead trees (ntree cell-1) THINNEDTREE Number of thinned trees (ntree cell-1) VEG\_D Annual number of vegetative days (days year¹) FIRST\_VEG\_DAY First annual day of vegetative period (DIM) CTRANSP Canopy Transpiration (mm m⁻²year¹) CINT Canopy Interception (mm m⁻²year¹) CLE Canopy Latent Heat (W m⁻²year¹) WUE Annual Water Use Efficiency (DIM) MIN\_RESERVE\_C Current Minimum reserve carbon pool (tC cell<sup>-1</sup>) RESERVE\_C Current Reserve carbon pool (tC cell<sup>-1</sup>) STEM C Current Stem carbon pool (tC cell<sup>-1</sup>) STEMSAP\_C Current Stem sapwood carbon pool (tC cell-1) STEMHEART C Current Stem heartwood carbon pool (tC cell-1) STEMSAP\_PERC Stem Sapwood vs. Total Stem (%age) STEMLIVE\_C Current Stem live wood carbon pool (tC cell<sup>-1</sup>) STEMDEAD\_C Current Stem dead wood carbon pool (tC cell<sup>-1</sup>) STEMLIVE PERC Live stem vs. Total stem (%age) MAX\_LEAF\_C Maximum Current Leaf carbon pool (tC cell -1 year -1) MAX\_FROOT\_C Maximum Current Fine Root carbon pool (tC cell -1 year -1) CROOT C Current Coarse Root carbon pool (tC cell-1) CROOTLIVE\_C Current Coarse root live wood carbon pool (tC cell<sup>-1</sup>) CROOTDEAD C Current Coarse root dead wood carbon pool (tC cell<sup>-1</sup>) $CROOTLIVE\_PERC$ Live Coarse Root vs. Total stem (%age) BRANCH\_C Current Branch carbon pool (tC cell-1) BRANCHLIVE\_C Current Branch live wood carbon pool (tC cell<sup>-1</sup>) BRANCHDEAD C Current Branch dead wood carbon pool (tC cell<sup>-1</sup>) BRANCHLIVE PERC Live Branch vs. Total stem (%age) FRUIT\_C Current Fruit carbon pool (tC cell-1) MAX FRUIT C Annual Fruit carbon pool (tC cell-1year-1) RESERVE N Current Reserve nitrogen pool (tC cell-1) STEM N Current Stem nitrogen pool (tC cell-1) STEMLIVE N Current Live Stem nitrogen pool (tN cell-1) STEMDEAD N Current Dead Stem nitrogen pool (tN cell-1) CROOT N Current Coarse Root nitrogen pool (tN cell-1) CROOTLIVE\_N Current Coarse root live wood nitrogen pool (tN cell<sup>-1</sup>) CROOTDEAD N Current Coarse root dead wood nitrogen pool (tN cell<sup>-1</sup>) BRANCH\_N Current Branch nitrogen pool (tN cell<sup>-1</sup>) BRANCHLIVE\_N Current Branch live wood nitrogen pool (tN cell<sup>-1</sup>) BRANCHDEAD N Current Branch dead wood nitrogen pool (tN cell<sup>-1</sup>) FRUIT\_N Current Fruit nitrogen pool (tN cell-1) STANDING\_WOOD Standing wood carbon (tC cell-1) DELTA WOOD Annual wood increment (tC cell-1year-1) CUM\_DELTA\_WOOD Cumulated annual wood increment (tC cell-1year1) BASAL\_AREA Individual basal area (m²ha-1) TREE\_CAI Single Tree Current Annual Volume Increment (m³tree-¹year¹) TREE MAI Single Tree Mean Annual Volume Increment (m³tree-¹year¹) CAI Current Annual Volume Increment (m³class⁻¹year⁻¹) MAI Mean Annual Volume Increment (m³class⁻¹year⁻¹) VOLUME Stem volume (m³class⁻¹) TREE\_VOLUME Single tree volume (m³tree⁻¹) DELTA\_TREE\_VOL (perc) Tree volume increment (%) DELTA\_AGB Aboveground biomass increment (tC cell<sup>-1</sup>year<sup>-1</sup>) DELTA\_BGB Belowground biomass increment (tC cell<sup>-1</sup>year<sup>-1</sup>) AGB Aboveground Biomass pool (tC cell<sup>-1</sup>) BGB Belowground Biomass pool (tC cell<sup>-1</sup>) BGB.AGB BGB/AGB DELTA\_TREE\_AGB Aboveground biomass increment (tC cell-1year-1) DELTA\_TREE\_BGB Belowground biomass increment (tC cell-1year-1) $C_{-}HWP$ Annual harvested woody products removed from stand (tC cell<sup>-1</sup>year<sup>-1</sup>) VOLUME\_HWP Annual volume harvested woody products removed from stand (m³cell<sup>-1</sup> ¹year-¹) STEM\_RAStem autotrophic respiration $(gC m^{-2} y ear^{-1})$ LEAF\_RALeaf autotrophic respiration $(gC m^{-2} y ear^{-1})$ FROOT\_RAFine root autotrophic respiration $(gC m^{-2} y ear^{-1})$ User's Guide 3D-CMCC-FEM Coarse root autotrophic respiration (gC m<sup>-2</sup>year<sup>-1</sup>) CROOT RA BRANCH\_RA Branch autotrophic respiration (gC m<sup>-2</sup>year<sup>-1</sup>) #### At cell level: Gross Primary Production (gC m<sup>-2</sup>year<sup>-1</sup>) gpp Net Primary Production (gC m<sup>-2</sup>year<sup>-1</sup>) npp Autotrophic respiration (gC m<sup>-2</sup>year<sup>-1</sup>) ar Heterotrophic Respiration (gC m<sup>-2</sup>year<sup>-1</sup>) hr rsoil Soil respiration flux (gC m<sup>-2</sup>year<sup>-1</sup>) rsoilCO2 Soil respiration flux (gC m<sup>-2</sup>year<sup>-1</sup>) Annual ecosystem respiration (gC m<sup>-2</sup>year<sup>-1</sup>) reco Annual net ecosystem exchange (gC m<sup>-2</sup>year<sup>-1</sup>) nee Annual net ecosystem production (gC m<sup>-2</sup>year<sup>-1</sup>) nep Annual evapotranspiration (mm m<sup>-2</sup>year<sup>-1</sup>) et Latent heat flux (W m<sup>-2</sup>year<sup>-1</sup>) le Annual soil evaporation (mm m<sup>-2</sup>year<sup>-1</sup>) soil.evapo Current available soil water (mm volume<sup>-1</sup>) asw iWue Annual intrinsic Water Use Efficiency (DIM) Current volume (m<sup>-3</sup>cell) vol Cumulated volume (m<sup>-3</sup>cell) cum\_vol Current amount of water outflow (runoff) (mm m<sup>-2</sup>year<sup>-1</sup>) run\_off Litter carbon (gC m<sup>-2</sup>) litrC Litter labile carbon (gC m<sup>-2</sup>) litr1C Litter unshielded carbon (gC m<sup>-2</sup>) litr2C litr3C Litter shielded carbon (gC m<sup>-2</sup>) Litter lignin carbon (qC m<sup>-2</sup>) litr4C Cwd carbon (gC m<sup>-2</sup>) cwd C Cwd unshielded (gC m<sup>-2</sup>) cwd\_2C cwd\_3C Cwd shielded (gC m<sup>-2</sup>) Cwd lignin (gC m<sup>-2</sup>) cwd 4C soilC Soil carbon (gC m<sup>-2</sup>) Microbial recycling pool carbon (fast) (gC m<sup>-2</sup>) soil1C soil2C Microbial recycling pool carbon (medium) (gC m<sup>-2</sup>) Microbial recycling pool carbon (slow) (gC m<sup>-2</sup>) soil3C Recalcitrant SOM carbon (humus, slowest) (gC m<sup>-2</sup>) soil4C Litter nitrogen (gN m<sup>-2</sup>) litterN litter1N Litter labile nitrogen (gN m<sup>-2</sup>) Litter unshielded cellulose nitrogen (gN m<sup>-2</sup>) litter2N Litter shielded cellulose nitrogen (gN m<sup>-2</sup>) litter3N Litter lignin nitrogen (qN m<sup>-2</sup>) litter4N cwd N Cwd nitrogen (gN m<sup>-2</sup>) Cwd unshielded nitrogen (gN m<sup>-2</sup>) cwd 2N Cwd shielded nitrogen (gN m<sup>-2</sup>) cwd\_3N Cwd lignin nitrogen (gN m<sup>-2</sup>) cwd 4N soilN Soil nitrogen (gN m<sup>-2</sup>) solar\_rad soil1N Microbial recycling pool nitrogen (fast) (gN m<sup>-2</sup>) soil2N Microbial recycling pool nitrogen (medium) (gN m<sup>-2</sup>) soil3N Microbial recycling pool nitrogen (slow) (gN m<sup>-2</sup>) Recalcitrant SOM nitrogen (humus, slowest) (gN m<sup>-2</sup>) soil4N Incoming short-wave radiation (MJ m<sup>-2</sup>year<sup>-1</sup>) Cumulated Precipitation (mm m<sup>-2</sup> year<sup>-1</sup>) tavg Average air temperature (°C) tmax Maximum air temperature (°C) tmin Minimum air temperature (°C) tday Daylight average air temperature (°C) tnight Nightime average air temperature (°C) vpd Vapour Pressure Deficit (hPa-mbar) tsoil Average soil temperature (°C) rh Relative Humidity (%) avg\_asw Average available soil water (mm volume<sup>-1</sup>) [co2] CO2 concentration (ppmv) #### 9.3 Monthly Outputs prpc At class level: YEAR Year of simulation MONTH Month of simulation LAYER Layer of tree class HEIGHT Average height of a species (m) DBH Average diameter at breast height of a species (cm) AGE Age of trees (years) SPECIES Tree species MANAGEMENT T = Timber GPP Gross Primary Production (gC m<sup>-2</sup> month<sup>-1</sup>) NET\_ASS Monthly net assimilation (gC m<sup>-2</sup> month<sup>-1</sup>) RA Autotrophic Respiration (gC m<sup>-2</sup> month<sup>-1</sup>) NPP Net Primary Production (gC m<sup>-2</sup> month<sup>-1</sup>) CUE Monthly Carbon Use Efficiency $(0 \rightarrow 1)$ $(gC_{NPP} gC_{GPP}^{-1})$ CTRANSP Canopy Transpiration (mm m<sup>-2</sup>month<sup>-1</sup>) CET Canopy Evapotranspiration (mm m<sup>-2</sup>month<sup>-1</sup>) CLE Canopy Latent Heat (W m<sup>-2</sup>month<sup>-1</sup>) CC Canopy Cover DBHDC DBH/Crown diameter relationship HD EFF Effective Height/Diameter ratio (DIM) HDMAX Height (m) to Base diameter (m) ratio MAX (DIM) HDMIN Height (m) to Base diameter (m) ratio MIN (DIM) Number of trees (n tree cell-1) N TREE WUE Monthly Water Use Efficiency (DIM) Reserve carbon pool (tC cell-1) Wres Stem carbon pool (tC cell-1) WS Stem live wood pool (tC cell-1) WSL Stem dead wood (tC cell-1) WSD Maximum leaf wood (tC cell-1) **PWL** Maximum fine root wood (tC cell-1) **PWFR WCR** Coarse root biomass (tC cell-1) WCRL Coarse root live wood biomass (tC cell $^{-1}$ ) WCRD Coarse root deadwood biomass (tC cell $^{-1}$ ) WBB Branch biomass (tC cell<sup>-1</sup>) WBBL Branch live wood biomass (tC cell<sup>-1</sup>) WBBD Branch dead wood biomass (tC cell<sup>-1</sup>) #### At cell level: gppGross Primary Production (gC m^2month^1)nppNet Primary Production (gC m^2month^1)arAutotrophic respiration (gC m^2month^1)etMonthly evapotranspiration (gC m^2month^1) le Latent heat flux (W m<sup>-2</sup>) asw Available soil water (mm volume<sup>-1</sup>) iWue Intrinsic Water Use Efficiency #### 9.4 Daily Outputs At class level: YEAR Year of simulation MONTH Month of simulation DAY Day of simulation LAYER Layer of forest structure HEIGHT Average height of a specie (m) DBH Average diameter at breast height of a specie (cm) AGE Age of trees (years) SPECIES Tree species SPECIES Tree species MANAGEMENT T = Timber GPP Gross Primary Production (gC m<sup>-2</sup>day<sup>-1</sup>) Av\_TOT Carboxylation rate for limited assimilation ( $\mu$ mol m<sup>-2</sup>s<sup>-1</sup>) Aj\_TOT RuBP regeneration limited assimilation ( $\mu$ mol m<sup>-2</sup>s<sup>-1</sup>) Final assimilation rate ( $\mu$ mol m<sup>-2</sup>s<sup>-1</sup>) $A_{\_}TOT$ RG Growth respiration (gC m<sup>-2</sup>day<sup>-1</sup>) Maintenance Respiration (qC m<sup>-2</sup>day<sup>-1</sup>) RMAutotrophic respiration (gC m<sup>-2</sup>day<sup>-1</sup>) RANPP Net Primary Production (gC m<sup>-2</sup>day<sup>-1</sup>) ВР Daily biomass production (gC m<sup>-2</sup>day<sup>-1</sup>) Daily carbon Use Efficiency ( $gC_{NPP} gC_{GPP}^{-1}$ ) CUE **BPE** Daily biomass production efficiency (gC m<sup>-2</sup>day<sup>-1</sup>) LAI PROJ LAI for Projected Area covered (at zenith angle) (m<sup>2</sup> m<sup>-2</sup>) PEAK-LAI\_PROJ Peak Projected LAI (maximum attainable LAI) (m² m⁻²) LAI EXP LAI for Exposed Area covered (m² m⁻²) D-CC\_P Projected Canopy Cover (frac) DBHDC DBH/Crown diameter relationship CROWN\_AREA\_PROJ Crown Projected Area (at zenith angle) (m²) PAR Photosynthetically Active Radiation (molPAR m<sup>-2</sup>day<sup>-1</sup>) APAR Absorbed Photosynthetically Active Radiation (molPAR m²day¹) fAPAR Fraction of Absorbed Photosynthetically Active Radiation (unitless) NTREE Number of trees VEG\_D Day of vegetative period for class (Days/Year) INT Canopy Interception (mm m<sup>-2</sup>day<sup>-1</sup>) WAT Canopy Water stored (mm m<sup>-2</sup>) EVA Canopy Evaporation (mm m<sup>-2</sup>day<sup>-1</sup>) TRA Canopy Transpiration (mm m<sup>-2</sup>day<sup>-1</sup>) ET Canopy Evapotranspiration (mm m<sup>-2</sup>day<sup>-1</sup>) LE Canopy Latent Heat (W m<sup>-2</sup>) WUE Water Use Efficiency (DIM) RESERVE\_C Current Reserve carbon pool (tC cell<sup>-1</sup>) STEM\_C Current Stem carbon pool (tC cell<sup>-1</sup>) STEMSAP\_C Current Stem sapwood carbon pool (tC cell<sup>-1</sup>) STEMLIVE\_C Current Stem live wood carbon pool (tC cell<sup>-1</sup>) STEMDEAD C Current Stem dead wood carbon pool (tC cell<sup>-1</sup>) LEAF\_CCurrent Leaf carbon pool (tC cell-1)FROOT\_CCurrent Fine root carbon pool (tC cell-1)CROOT\_CCurrent Coarse root carbon pool (tC cell-1) CROOTSAP\_C Current Coarse root sapwood carbon pool (tC cell<sup>-1</sup>) CROOTLIVE\_C Current Coarse root live wood carbon pool (tC cell<sup>-1</sup>) CROOTDEAD\_C Current Coarse root dead wood carbon pool (tC cell<sup>-1</sup>) BRANCH\_C Current Branch carbon pool (tC cell-1) BRANCHSAP\_CCurrent Branch sapwood carbon pool (tC cell-1)BRANCHLIVE\_CCurrent Branch live wood carbon pool (tC cell-1)BRANCHDEAD\_CCurrent Branch dead wood carbon pool (tC cell-1) FRUIT C Current Fruit carbon pool ((tC cell-1) DELTARESERVE C Daily allocation to reserve (tC cell-1day-1) DELTA STEM C Daily allocation to stem (tC cell-1day-1) DELTA LEAF C Daily allocation to leaf (tC cell-1day-1) DELTA FROOT C Daily allocation to fine root (tC cell-1day-1) DELTA CROOT C Daily allocation to coarse root (tC cell<sup>-1</sup>day<sup>-1</sup>) DELTA BRANCH C Daily allocation to branch (tC cell-1day-1) DELTA FRUIT C Daily allocation to fruit (tC cell-1day-1) RESERVE N Current reserve nitrogen pool (tN cell-1) STEM N Current stem nitrogen pool (tN cell-1) STEMLIVE N Current Live Stem nitrogen pool (tN cell<sup>-1</sup>) STEMDEAD N Current Dead Stem nitrogen pool (tN cell<sup>-1</sup>) LEAF N Current leaf nitrogen pool (tN cell-1) FROOT N Current Fine Root nitrogen pool (tN cell-1) CROOT\_N Current Coarse Root nitrogen pool (tN cell<sup>-1</sup>) CROOTLIVE\_N Current Coarse root live wood nitrogen pool (tN cell<sup>-1</sup>) CROOTDEAD N Current Coarse root dead wood nitrogen pool (tN cell<sup>-1</sup>) BRANCH N Current Branch nitrogen pool (tN cell-1) BRANCHLIVE\_N Current Branch live wood nitrogen pool (tN cell<sup>-1</sup>) BRANCHDEAD\_N Current Branch dead wood nitrogen pool (tN cell<sup>-1</sup>) FRUIT N Current Fruit nitrogen pool (tN cell-1) Daily allocation to reserve (tN cell<sup>-1</sup>day<sup>-1</sup>) DELTARESERVE N DELTA STEM N Daily allocation to stem (tN cell-1day-1) Daily allocation to leaf ((tN cell-1day-1) DELTA LEAF N DELTA FROOT N Daily allocation to fine root (tN cell<sup>-1</sup>day<sup>-1</sup>) DELTA\_CROOT\_N Daily allocation to coarse root (tN cell-1day-1) Daily allocation to branch (tN cell-1day-1) DELTA\_BRANCH\_N Daily allocation to fruit (tN cell-1day-1) DELTA FRUIT N Stem autotrophic respiration (qC m<sup>-2</sup>day<sup>-1</sup>) STEM AR LEAL AR Leaves autotrophic respiration (gC m<sup>-2</sup>day<sup>-1</sup>) Fine Roots autotrophic respiration (qC m<sup>-2</sup>day<sup>-1</sup>) FROOT AR CROOT AR Coarse Roots autotrophic respiration (qC m<sup>-2</sup>day<sup>-1</sup>) BRANCH AR Branch autotrophic respiration (qC m<sup>-2</sup>day<sup>-1</sup>) F CO2 CO2 fertilization effect (DIM) (as choiced in script) F CO2 VER CO2 fertilization effect (DIM) (Veroustraete's version) F\_CO2\_FRA CO2 fertilization effect (DIM) (Franks et al's version) FCO2\_TR CO2 fertilization effect (DIM) (for stomatal conductance) FLIGHT Light modifier FAGE Age modifier $(0\rightarrow 1)$ FT Air temperature modifier $(0 \rightarrow 1)$ FVPD VPD modifier $(0 \rightarrow 1)$ FN Soil nutrient modifier $(0 \rightarrow 1)$ FSW Soil water modifier $(0 \rightarrow 1)$ LITR\_C Current Litter Carbon Pool (tC cell<sup>-1</sup>) CWD\_C Coarse Woody Debris Carbon (tC cell<sup>-1</sup>) #### At cell level: gppGross Primary Production (gC m-2day-1)nppNet Primary Productivity (gC m-2day-1)arAutotrophic respiration (gC m-2day-1)hrHeterotrophic respiration (gC m-2day-1)rsoilSoil respiration flux (gC m-2year-1) reco Daily ecosystem respiration (gC m<sup>-2</sup>day<sup>-1</sup>) nee Daily net ecosystem exchange (gC m<sup>-2</sup>day<sup>-1</sup>) nep Daily net ecosystem production (gC m<sup>-2</sup>day<sup>-1</sup>) et Daily evapotranspiration (mm m<sup>-2</sup>day<sup>-1</sup>) le Daily latent heat flux (W m<sup>-2</sup>) soil\_evapo Daily soil evaporation (mm m<sup>-2</sup>day<sup>-1</sup>) snow\_pack Current Amount of Snow (Kg m<sup>-2</sup>) asw Current available soil water (mm volume<sup>-1</sup>) moist\_ratio Soil moisture ratio (DIM) iWue Daily intrinsic Water Use Efficiency (DIM) litrC Litter carbon (gC m-2) litr1C Litter labile carbon (gC m-2) litr2C Litter unshielded carbon (gC m-2) litr3C Litter shielded carbon (gC m-2) litr4C Litter lignin carbon (gC m-2) cwd\_C Cwd carbon (gC m-2) cwd\_2CCwd unshielded (gC m-2)cwd\_3CCwd shielded (gC m-2)cwd\_4CCwd lignin (gC m-2)soilCSoil carbon (gC m-2) soil1CMicrobial recycling pool carbon (fast) (gC m-2)soil2CMicrobial recycling pool carbon (medium) (gC m-2)soil3CMicrobial recycling pool carbon (slow) (gC m-2)soil4CRecalcitrant SOM carbon (humus, slowest) (gC m-2) litterNLitter nitrogen (gN m-2)litter1NLitter labile nitrogen (gN m-2) litter2N Litter unshielded cellulose nitrogen (gN m<sup>-2</sup>) litter3N Litter shielded cellulose nitrogen (gN m<sup>-2</sup>) litter4N Litter lignin nitrogen (gN m<sup>-2</sup>) cwd\_N Cwd nitrogen (gN m<sup>-2</sup>) cwd\_2NCwd unshielded nitrogen (gN m-2)cwd\_3NCwd shielded nitrogen (gN m-2)cwd\_4NCwd lignin nitrogen (gN m-2) soilN Soil nitrogen (qN m<sup>-2</sup>) soil1NMicrobial recycling pool nitrogen (fast) (gN m-2)soil2NMicrobial recycling pool nitrogen (medium) (gN m-2)soil3NMicrobial recycling pool nitrogen (slow) (gN m-2)soil4NRecalcitrant SOM nitrogen (humus, slowest) (gN m-2) tsoil Soil Temperature (°C) daylenght Day length # 10. Management The model simulates several management practices on high stands, while coppice management is still under development. Three different management practices can be simulated by 3D-CMCC-FEM. For each treatment the user can specify intensity, interval and rotation age. There are three main settings for management: - "man on": the model will simulate the management as set in the *species.txt* file (e.g. Fagus\_sylvatica.txt), for example the thinning. - "man var": the model simulates the observed management (the thinning as observed in the changes of stand density in input.txt file) and then simulates the thinning and final harvesting at the years taken from a table with the intensity as in the *species.txt* file (e.g. Fagus\_sylvatica.txt) - "man off": no management will be applied # 11. Questions or comments Shall you have issues with the code or for any suggestions, please let us know. For any questions on how to parameterize or run the code, please read this file first. #### **Contact:** 3D-CMCC-FEM lab. 3d cmcc\_fem@gmail.com Alessio Collalti alessio.collalti@cnr.it <u>Carlo Trotta</u> trotca@unitus.it