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Abstract: In recent decades, droughts, deforestation and wildfires have become recurring
phenomena that have heavily affected both human activities and natural ecosystems in Amazonia.
The time needed for an ecosystem to recover from carbon losses is a crucial metric to evaluate
disturbance impacts on forests. However, little is known about the impacts of these disturbances,
alone and synergistically, on forest recovery time and the resulting spatiotemporal patterns at the
regional scale. In this study, we combined the 3-PG forest growth model, remote sensing and field
derived equations, to map the Amazonia-wide (3 km of spatial resolution) impact and recovery time
of aboveground biomass (AGB) after drought, fire and a combination of logging and fire. Our
results indicate that AGB decreases by 4%, 19% and 46% in forests affected by drought, fire and
logging + fire, respectively, with an average AGB recovery time of 27 years for drought, 44 years for
burned and 63 years for logged + burned areas and with maximum values reaching 184 years in
areas of high fire intensity. Our findings provide two major insights in the spatial and temporal
patterns of drought and wildfire in the Amazon: (1) the recovery time of the forests takes longer in
the southeastern part of the basin, and, (2) as droughts and wildfires become more frequent—since
the intervals between the disturbances are getting shorter than the rate of forest regeneration—the
long lasting damage they cause potentially results in a permanent and increasing carbon losses from
these fragile ecosystems.
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1. Introduction

Natural disturbances have a key role in forest ecosystem dynamics [1], yet global
changes in climate and land-uses have intensified disturbances rates in several biomes
with important consequences on the ecosystems resilience [2]. Events like droughts and
wildfires are becoming widespread phenomena in vast areas of the globe, potentially
affecting the ecosystem services they provide [3,4] even in humid biomes with high
rainfall rates, such as Amazonia [5-7]. Housing more than half of the world’s remaining
rainforest areas, Amazonian forests account for considerable carbon storage in living
biomass and soils, estimated at around 150-200 Pg [8,9]. In addition, the region represents
one of the most important biodiversity hotspots of the planet [10,11]. Amazonian forests
are under considerable pressure due to the increased frequency and intensity of
disturbances in moist tropical regions [12]. Forest fires and large-scale drought events are
both directly dependent on climate [13] and their effects are expected to become more
severe with climate change effects (i.e., mostly warming and reduction in precipitation).
In combination with human activities, such as selective logging and other land-use
changes, increasing fire and drought severity are expected to cause significant forest losses
[14].

The Amazon Basin’s historical baseline of disturbances has been heavily altered in
the last 20 years as a result of anthropogenic activities, increasing the rates of
deforestation, drought and wildfire and their impacts [15]. In the early 2000s, logging
activities affected ca. 10,000-20,000 km? year of tropical forests in the Brazilian Amazon
and it is estimated that understory fires destroyed ca. 85,000 km? of standing forests in the
period 1999-2010 [16,17]. Moreover, recent studies have shown that Amazonian forests
are becoming more exposed to droughts [18,19], including extreme drought events that
would not be expected to take place more than once in a century (e.g., the three
devastating droughts of 2005, 2010 and 2016; [20,21]). Altogether, droughts, wildfires and
logging activities increase the susceptibility of forests to successive burning by increasing
ignition rates, wind speed, creating drier microclimatic conditions near the soil surface
and promoting exotic grass invasion. The effect of fire in forest ecosystems contrasts with
that observed at larger spatial scales (i.e., global scale) and in fire-prone regions in which
anthropogenic influences often reduce fire spread [22]. Therefore, the increasing risk of
wildfires is an additional driver of change in the Amazon region [23].

Forest degradation due to more frequent and intense disturbances in the Amazon
[24,25] results in long-term reduction in carbon stocks [26] with potential release of the C
stored in Amazonian forests. The degree of degradation of the forest C stocks depends on
four major factors: (1) the type of disturbance (e.g., logging, droughts and wildfires); (2)
intensity (i.e., percentage of C loss); (3) the time return interval (i.e., years from one event
to the next one) [25,27,28]; and (4) disturbance synergisms (i.e., the interacting effects
between disturbances).

Several studies have analyzed forest recovery after disturbances at either broad or at
multiple scales disturbances [29,30], but few of them have been conducted in tropical
forests and specifically in the Amazon Basin. When conducted, these studies are usually
limited in temporal scale (usually <20 years) [25,31,32] and focus on the effects of a single
disturbance and in relatively small areas [33-35]. There is a lack of studies looking at
recovery beyond 3040 years. As a result, we still have a limited understanding on forest
aboveground biomass (AGB) resilience to disturbance in Amazonian forests (i.e., how
much time does it take for the forest to return to its pre-disturbance status), especially at
the regional scale and taking interacting effects of multiple disturbance into consideration.

One straightforward way of addressing the consequences of disturbance in forest
AGB is by integrating geospatial techniques with remote sensing and process-based forest
growth models [36,37]. Specifically, remote sensing and GIS technologies allow the
assessment of forest AGB at broad scales [38] whereas process-based forest growth models
can provide insights on the mechanisms and processes involved in forest recovery and
their relationship with spatiotemporal climate (including human)-induced scenarios.
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Models can help in assessing the recovery time of vegetation using climatic variables to
predict vegetation productivity and its spatial variability [38]. At a regional scale, net
primary productivity (NPP) is often used as an indicator of inherent plant growth
potential [39]. Several studies have indeed assumed a strong relationship between
productivity and biomass [40] with the first one being a function of the second. Indeed,
the targeted parameter AGB is also influenced by climate, water availability and soil
fertility [39—41]. In this study, we assessed the recovery time (i.e., the time necessary for a
forest to recover its pre-disturbance AGB levels) of Brazilian Amazon forests AGB from
drought, fire and a combination of logging and fire disturbances, using a dynamic forest
carbon model that simulates vegetation recovery time as a function of climate scenarios
and geospatial data. With the present study, we aim to investigate the recovery time of
AGB in the Amazon forests when subject to a disturbance caused by: (1) an extreme
drought, (2) a catastrophic fire and (3) a combination of logging and fire disturbances by
integrating the existing knowledge [24,42—44] within our modeling framework.

2. Materials and Methods

We used a spatially implicit forest productivity model based on the net primary
productivity of the 3-PG model (Figure 1) (see Section 2.1 The Model) to estimate forest
recovery time (here defined as the time necessary for a forest to recover at its pre-
disturbance AGB levels). Analysis of AGB recovery was carried out for the Brazilian
Amazon biome, which encompasses about 3.5 million km? located between 15° S-5° N
and 40° W-80° W. The region consists of one of the largest preserved forests in the world
that has been experiencing strong human disturbances in recent times, especially in “the
arch of deforestation” (Figure 2).

y .

,/ Recovered $-4
| Aboveground | g o
'\\BiDmaSS (aGB) /

N ,/"‘

Reference

Net Primary Productivity

o

Disturbances

W T m o

Climate inputs

2. O

Figure 1. Proof-of-concept vegetation recovery time simulations as a function of climate variables (i.e., soil-plant available
water (fSW), photosynthetically active radiation (PAR), vapor pressure deficit (fVPD), and air temperature (fTemp), see The
Model for description). Aboveground biomass (AGB) losses resulting from drought stress and fire are a function of the
maximum climatological water deficit (MCWD, see The Model for description).
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Figure 2. Study area: Amazonian forest in Brazil. Amazon biome extent (gray area). Forest loss map (yellow-red) has been
displayed according to [45,46] (Global Forest Change dataset in Google Earth Engine). Red pixels identify areas of where
tree cover loss has been detected.

2.1. The Model

In this study, recovery time dynamics are simulated using the 3-PG model (Physio-
logical Principles in Predicting Growth; [47]), as embedded and parameterized into the
CARLUG model by [48], driven by four monthly climatic variables: photosynthetically
active radiation (PAR, mol PAR m=2 month-), vapor pressure deficit (VPD, KPa), precipi-
tation (mm month™) and air temperature (°C), respectively. The 3-PG model was used to
estimate gross and net primary productivity (GPP and NPP, both in g C m? month™) as
follows:

NPP = GPP XY (1)

where Y is the carbon use efficiency (i.e., the fraction of GPP not used to support auto-
trophic respiration, known as CUE [49-51]). GPP is computed as:

GPP = a,, X modifiers x PAR x (1 — e~*xLAD) ()

where ax is the maximum quantum canopy efficiency (i.e., the maximum capacity in con-
verting light into photosynthates without environmental or other functional limitations,
in mol C mol PAR" m=2 month-1), modifiers comprise environmental limitations to maxi-
mum photosynthetic rate (temperature, fTEMP; soil water, fSW; and vapor pressure defi-
cit, fVPD), with values ranging from zero (complete limitation) to one (no limitation). For
an in-depth description of modifiers algorithms see also [48,52]. The last two terms in
Equation (2) reflect the incident PAR effectively absorbed by the canopies (i.e., APAR)
based on their leaf area index (LAL m? m=) and the leaf light extinction coefficient (k,
unitless) as in Beer’s Law [53].

Each month, the model assumes that leaf, wood, and root carbon pools increase by
an overall amount equal to the NPP, which are, respectively, allocated proportionally in
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their three pools as in the standard 3-PG carbon partitioning-allocation scheme [54]. The
partitioning of NPP is the outcome of the climate and soil conditions interacting with veg-
etation through a series of differential equations that describe the flow of C within the tree
compartments [48]. Therefore, the model predicts the distribution of forest biomass from
carbon stocks, but in order to obtain biomass we converted C to biomass assuming that
one ton of biomass contains 0.5 tons of C [55]. We assume that the re-equilibration of forest
carbon after disturbances (i.e., steady state undisturbed conditions) is when the AGB
growth and the decay rates stabilize. We also estimated the average time to recover 90%
of old-growth forests’ carbon levels. The 90% threshold has often been used in similar
studies (e.g., [56]) and can thus more easily be compared to previous results; the 100%
threshold corresponds to a full recovery of carbon stocks, but it may take significantly
longer.

The study conducted by [48] uses the recalibrated 3-PG model parameters for the
Amazonian forests (the overall parameters description and their values are shown in Sup-
porting Information, see Table S1). The 3-PG calculates NPP as a constant fraction of GPP,
using an NPP/GPP ratio (Y = 0.47) based on empirical evidence [47]. For Brazilian Amazon
forests other studies suggest Y to be closer to 0.3 [57] while others report much higher
values at some tropical sites, even including Amazonian ones (i.e., Y > 0.5; [51]). However,
the issue of whether Y is a constant value, its actual value, even including its top-down
limits, is a much-debated issue as described in [51,58].

An overall 3-PG model parameter sensitivity analysis has been performed already by
a number of authors (e.g., [59]) showing how the 3-PG model is mostly sensitive to stem
allometric parameters (i.e., those used to obtain from trees structure the tree biomass),
ratios for biomass partitioning and allocation, maximum canopy conductance, turnover
time of wood, and maximum canopy quantum efficiency. For an in-depth 3-PG model
parameter sensitivity analysis we refer to the works of [48,59] and this will be not consid-
ered and discussed further here. In addition, we used the pan-tropical biomass map gen-
erated by Avitabile et al. [60] as reference (pre-impact) levels to initialize the model and
combining it with two comprehensive recent estimates of carbon density (i.e., estimations
of [55,61] and covering a wide 250-500 Mg ha' range (Figure S1).

2.2. Estimating Drought, Fire and Logging Impacts on AGB Stocks

The loss of AGB due to drought events was modeled as a function of the MCWD
(Maximum Climatological Water Deficit index, representing the maximum climatological
water deficit reached in the year), a common index used to measure the cumulative water
stress in Amazonia (e.g., [42,62,63]). The MCWD reflects the intensity and length of the
dry season, when evapotranspiration exceeds precipitation (i.e., negative balance). A
measure of water deficit related to tree mortality in Amazonian forests that is denoted as
in Lewis et al. [42], that is:

AAGB = 0.378 — 0.052 x AMCWD (3)

We estimated the MCWD anomalies (namely, AMCWD) for the year 2010 by first
estimating the mean MCWD for the baseline period from 1998 to 2015, without consider-
ing both the years 2005 and 2010. The AMCWD have been shown to be strong predictors
of drought-associated tree mortality in the Amazon [62]. Specifically, a monthly water
deficit was calculated as the difference between precipitation and evapotranspiration
(with ground measurements estimated at 100 mm per month [63,64], i.e., evapotranspira-
tion is fixed at 100 mm month). As a result, we assume that the forest is in water deficit
when monthly precipitation falls below 100 mm. MCWD was calculated as the sum of
sequential monthly water deficits, where more negative MCWD values indicate higher
drought stress. We quantified the MCWD for the year of 2010 using the product 3B43 of
TRMM (Tropical Rainfall Measuring Mission at 0.25° grid-resolution), and then, the aver-
age of carbon losses for each pixel using Equation (3). The 2010 drought is one of the most
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intense and spatially extensive drought events ever recorded in the Brazilian Amazon
[42].

Effects of wildfire were estimated by using the CARLUC-Fire model [44]. This model
specifically accounts for the effects of fire by estimating forest carbon losses after a fire
event as a function of its intensity (FI). Fl is defined as the energy released per unit length
of fire-line (kWm=2), which is a key factor in estimating how vegetation responds to fire
events. The relationship between fire intensity and fire-induced biomass losses was de-
rived from a large-scale fire experiment in southeast Amazonia [24,44] (Equation (4)).
Based on this experiment, AGB losses were calculated as a function of FI as follows:

1
(1 + (245-0.002373xF1)) (4)

AGBps5es =

We limit our fire analysis to areas that burned between 2003 and 2016 [65] using in-
formation at 500 meters resolution from the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) Collection 6 MCD64A1 burned area product over the period 2003-2016.

As a substantial proportion of fires occurred in areas likely to have been previously
logged, we accounted for this effect in the estimation of the initial AGB by incorporating
an additional loss in fire effects of 40% in burned areas that were also cleared. We assumed
this based on findings of Berenguer et al. [43] that an average forest under selective log-
ging stores about 40% less carbon. Logged areas were defined using data from the annual
Landsat-based Project for Monitoring Amazonian Deforestation (PRODES,
http://www.obt.inpe.br/prodes). Because edge effects from logging have been shown to
affect forests up to 2-3 km from the border [66], we include forests located within 3 km
from a deforested pixel, as a selective logging influence zone and they were defined using
data from PRODES with cumulative deforestation up to 2017.

2.3. Experimental Runs

We ran the 3-PG model at 3 km x 3 km spatial resolution under mean monthly climate
conditions for the 19802009 period, to estimate the forest recovery time for both drought,
fire and logging + fire impacts (includes loss from logging and losses from fire). Climate
input variables used to calculate the climatic means consisted of monthly series of tem-
perature and mean vapor pressure deficit from the Climate Research Unit (CRU TS; [67]),
while PAR was obtained from the GOES-9 satellite product [68]. In each pixel, AGB re-
covery was assessed by simulating AGB dynamics with the model after an AGB loss cor-
responding to disturbance impact.

2.4. Assessing Model Results

Light detection and ranging (Lidar) remote sensing is widely used for monitoring
forest structure and biomass dynamics [69,70] in many forest ecosystems [71]. For in-
stance, airborne lidar (ALS) technologies help quantify changes in canopy structure, car-
bon stocks and recovery time at the local-to-regional scale under different types of forest
degradation (e.g., [25,72,73]).

In the present study, we compare our modeled recovery time from fire in logged
areas with airborne lidar-derived aboveground carbon density (ACD) recovery estimates
in forest stands (2891.45 Ha) located in Feliz Natal (Mato Grosso, Brasil) that were logged
and burned once. For computing the recovery time of ACD from lidar, we applied a model
developed by Rappaport et al. [25] that used multiple linear regression to model the re-
covery time of ACD (Kg C m?) in degraded forest stands based on degradation type. In
their study, the model was calibrated using a chronosequence of ACD maps derived from
lidar and degradation history data (from 2013 to 2018) across degraded forests stands [25].
The model is presented in Equation (5) and shows adjusted R? of 0.89. Herein, we chose
to compare our results with those provided in Rappaport et al. [25] due to lack of available
field data on the time scale addressed here to assess recovery time.
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Density

RT = 62.259 + 11.395 x log(t) - 10.268 x CF1 (5)

where RT refers to recovery time, t refers to time (years) and CF1 refers to degradation
history, once-burned stands.

2.5. Disturbance Return Interval

In order to inquire whether global changes could determine an increase in future
drought and fire frequency we projected the areal extent and spatial patterns of future
drought and fire impacts up to the year 2100 in order to understand whether global
changes could determine an increase in future drought and fire frequency in the study
area. We analyzed both future precipitations (based on Representative Concentration
Pathways, i.e,, RCP 8.5—representing unmitigated climate change scenario) and a land
use changes scenario (based on Aguiar et al. [74]) with a decrease in the extension and
level of protection of the areas and increases in deforestation rates from 2014 to 2020 and
continuing until 2100.

We built drought scenarios (2040-2070 and 2071-2100) using precipitation (related
with water stress, MCWD) from the ensemble of 35 climate models participating in the
Coupled Model Intercomparison Project phase 5 (CMIP-5, [75]). In detail, we derived the
forcing from the mean monthly simulated precipitation anomalies first averaged for all 35
models and then bias corrections with Tropical Rainfall Measuring Mission (TRMM data
product 3B43 [63]). To investigate frequency of future Amazonian droughts we assumed
severe drought condition when MCWD anomalies (subtraction between future projec-
tions and the historical average) is <-40 mm (threshold derived by Phillips et al. [62]),
below this threshold water stress is assumed to induce losses in AGB. We also used maps
of predicted change in fire recurrence in response to global changes obtained from Fon-
seca et al. [76] based on future land-use change data by Aguiar et al. [74]. The fire scenarios
(2040-2070 and 2071-2100) developed by Fonseca et al. [76] combine the effects of future
land-use and climate change on fire relative probability in the Brazilian Amazon in the
best-case and worst-case scenarios. We assume fire relative probability to equal fire rela-
tive frequency and then determine the mean fire return interval as the inverse of fire rel-
ative frequency.

3. Results

Results show that disturbances have substantially affected biomass in Brazilian Ama-
zonia. In the locations affected by drought, fire and logging + fire, AGB decreased by 4%,
19% and 46%, respectively (Figure 3). Our results suggest that during the 2010 drought,
about 1.5 million km? of the Brazilian Amazon lost a considerable amount of AGB (we
considered losses 210% of the initial AGB). Fire could also produce substantial losses in
above-ground carbon affecting 550,000 km? especially in southern Brazilian Amazon. Ap-
proximately 150,000 km? of the burned forest patches were located within 3 km from a
logged forest.
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Figure 3. Biomass density plots describing patterns before and after drought (a), fire (b) and logging + fire (c) impacts.
Only areas that burned between 2003 and 2016 are considered and, for (c), only burned areas up to 3 km from logging
areas. Recovery is defined as 100% of pre-disturbance AGB.

Average AGB recovery time was 27 years for drought-impacted, 44 years for burned,
and 63 years for logged + burned areas (includes loss from logging and loss from fire).
Recovery time from drought revealed a northwest-to-southeast gradient in the study area
(Figure 4a). Roughly 20% of these drought-affected areas, corresponding to ca. 364,000
km?, were estimated to recover in the first 10 years, with maximum values reaching 90
years in parts of southeastern Brazilian Amazonia (Figure 4). Forest fires were widespread
across the “arch of deforestation” (the region in southern and eastern Amazonia where
the rates of deforestation are higher) during the period 2003-2016 (Figure 4b). The longest
recovery times during this period were concentrated along the eastern and southwestern
extent of Amazon forests in Brazil, where the maximum was about 150 years after fire
disturbance. Subsequent wildfires events (i.e., multiple fires in the same location) ac-
counted for 10% of all forest fires during the period 2003-2016, delaying forest recovery
times within these areas (Figure 4b). The longest recovery times were found in logged-
and-burned forests with maximum values reaching 184 years (Figure 4c,cl). These results
consider a recovery of the carbon stock corresponding to 100% (i.e., recovery time ~184
years) (see The Model) resulting in a difference of about 122 years in logged and burned
forest which would be much faster if we would consider a recovery threshold of 90% (i.e.,
recovery time ~62 years) (Figure S2).

(b) Fire (¢} Logging and fire Recovery time (in years)

- i
75w T0-W
1) 7 &7
2 2]
g §
£ ]
&3

T T T T T
65:W  BOW 55W  50-W 5w
T —— 1
50 150

100

Recovery time (years)
Recovery time (years) Recovery time (years)

Figure 4. Aboveground recovery time (in years) for 2010 drought (a), fire areas that burned between 2003 and 2016 (b)
and in areas that were both burned and logged (c). Histogram plots summarize AGB recovery pixels distributions (in
years), for drought (al), fire (b1) and logging + fire (c1).

We compared our results with a lidar-derived model of recovery time in stands that
were logged and burned once (Figure 5a). Our estimations show smaller AGB decreases
in comparison with lidar-based estimates of carbon losses from fire (loss of AGB of 46%
vs. 55%). However, recovery rates were shown to be strongly correlated (Figure 5b).
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Figure 5. Airborne light detection and ranging (lidar) data were sampled (red line) in Feliz Natal, within the Xingu basin
(light green), Brazilian state of Mato Grosso (a). The forest growth model (3-PG green line) shows the relationship between
aboveground biomass (%) and recovery time in years. We compared it with a lidar-derived model of recovery time in
stands that were logged and burned once (CF1 refers to once-burned) [25] (orange line) (b). A sample of vertical profile of
a recovering forest which was degraded by fire and selective logging (c). The discrete return lidar data used for creating
the transect figure were acquired in 2018 with a point density of 22.98 points m= covering an area of 2891.25 ha in Feliz
Natal, Mato Grosso, Brazil [25], as part of the Sustainable Landscapes Brazil project program (data available from:
https://www.paisagenslidar.cnptia.embrapa.br/webgis/; details of airborne lidar (ALS) data acquisitions are presented in
the supplementary material, Table S2).

Increases in the extent and frequency of drought and fire (Figure 6) suggest that these
future disturbances could undermine the full forest recovery. Our results suggest that by
2070 the area affected by drought will increase approximately three-fold (Figure 6 —top
panel). Moreover, from the middle to the end of the century, the mean fire return intervals
(FRI) was projected to decrease from 10 to 8 years and the median FRI to decrease from 8
to 6 years from the 2040-2070 period to the 2070-2100 periods, respectively, in a worst
case land use change scenario (Figure 6 bottom panel). However, in a more optimistic
scenario the area subject to high fire frequency would be smaller (Figure 6 middle panel).
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Figure 6. Projected changes in droughts (as maximum climatological water deficit anomalies,
AMCWD) (upper panel) and fire return interval based on an optimistic land use scenario (mid
panel) and in the unmitigated scenarios with the worst-case land-use scenario (bottom panel).

4. Discussion

In the present study, we explored the AGB changes after drought, fire and a combi-
nation of logging and fire disturbances and the time needed for complete recovery as a
function of both climatic conditions and AGB in the Brazilian Amazon forest, using a
modeling-based approach. Our results suggest that fire is a much greater threat than
drought for the forest resilience, especially if logging occurs. These results highlight the
key threat imposed by fire to Amazon forests. The intensity of the disturbance event is
strongly related to both the amount of AGB lost and the recovery time of the forest. The
biomass recovery rates estimates reported here are consistent with those from Poorter et
al. [56] that showed AGB of Neotropical second growth forest took a median time of 66
years to recover to 90% of previous growth values after multiple disturbances events, in-
cluding land use changes. On the other hand, recent evidence [77] suggests that recovery
time might take at least 150 years until secondary forests (re)gain carbon levels similar to
primary forests, after drought disturbances thus indicating that these biomes have recov-
ery rates that are much lower than previously suggested.

Our results also suggest that by the end of the century, especially after 2070, the Bra-
zilian Amazon will be affected by more frequent droughts with the southern area being
more vulnerable since it will need a longer time to recover after these events. Thus, climate
change will greatly increase the threat imposed to the forest, potentially jeopardizing for-
est resilience. The interplay between longer forest recovery times and more frequent
droughts has been previously evidenced in the Amazonia, where longer recovery times
have been documented [78]. Moreover, if on the one hand the extreme droughts of 2005,
2010 and 2016 have prevented the full recovery of the forests, on the other, drought effects
on forest canopy carbon fixation capacity could potentially persist for several years during
recovery processes [78], leading to forest degradation and changes in forest species com-
position, and evidence suggests that taller tree species have significantly higher mortality
than small tree species, when subject to drought [79,80].
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Our findings also confirm that the land carbon sink in the Brazilian Amazon will be
strongly impacted by a regime of a chronic state of incomplete recovery [78], with adverse
consequences also on the GPP due to shifts in precipitation patterns caused by anthropo-
genic emissions [81-83]. Indeed, across Amazon forests, GPP is modeled to decrease line-
arly with increasing seasonal water deficit [82]. Longer and more intense dry seasons have
been forecasted, together with an increased frequency and severity of drought events [84—
86] and future Amazon droughts are expected to become even more frequent [87,88]. Our
projections suggest about one extreme drought per decade (drought return interval rang-
ing from 4 to 16 years depending on the scenario of climate change). If drought frequency
increases, Amazon forest, both as species composition and regional carbon sink, will be
affected, which will thereby have an impact on global carbon cycling and contribute fur-
ther to climate change [62,80,89,90]. Previous studies have shown increased fire occur-
rence and tree mortality during and after Amazon droughts [6,89,91-93]. If these events
continue to increase in frequency, large parts of the Amazon could potentially shift from
rainforest vegetation to a fire-maintained degraded forest and may promote the persis-
tence of degraded forests with a savanna-like structure [94,95]. This change in forest type,
structure and ecology would most likely reduce both the forest sink capacity and even its
biodiversity and ecosystem services [94]. The net increase in areas that are more suscepti-
ble to wildfires, induced by either drought events increase, or potentially intensified by
climate change, could lead to significant biomass losses [9,96].

Human pressures play a crucial role in fire ignitions, wildfires could break out also
in non-dry years as in 2019, when more than 69,000 km? burnt despite the absence of
anomalous drought [97]. As droughts and wildfires are expected to become more fre-
quent, the time of occurrence between these disturbances may even get shorter than forest
recovery time, determining permanently damaged ecosystems and widespread degrada-
tion [95]. Although forest growth models are powerful tools that can be applied in simu-
lating the C dynamics in forests [98,99], our results are subject to some uncertainty and a
number of caveats [100,101]. In this study, we modeled vegetation recovery time as a func-
tion of climate only. This approach does not account for regional variation in growth rates
depending on soils types (due to their inner physico-chemical properties such as water
retention or local-scale variation based on prior land use [92,93]) growth rates are also
known to vary significantly by species [43]. In addition to the mechanisms mentioned
above, CO: fertilization of Amazonian vegetation and nitrogen deposition could play an
important, but yet often neglected, role in forest regeneration [102]. It has also been sug-
gested that atmospheric CO:z generally stimulates plant growth with increased rates in
photosynthetic activity and indirectly through increased water-use efficiency [103], but
not in all cases [104]. As COz accumulates in the atmosphere, Amazonian trees may also
accumulate more biomass resulting in denser canopies and faster growth [105]. But an
increased atmospheric CO2 concentration necessarily implies an increase in mean air tem-
perature which is in turn speculated to increase plants’ respiration and should result in a
levelled-off forest carbon use efficiency [83]. Recent studies indicate that the ability of in-
tact tropical forests to remove carbon from the atmosphere may be already saturating
[9,106] while others indicate for tropical species higher thermal acclimation capacities to
buffer C-losses by respiration [51], thus, calling for more studies on the possible conse-
quences of warming and increased atmospheric COz concentration on forest dynamics.
However, in the Amazon phosphorus is an important limiting nutrient over large parts
and its low availability may limit positive CO: fertilization effects.

Future Possibilities for Model Improvement

Lidar-derived 3D-point cloud and biomass products can be used to enhance models’
representation of complex and heterogeneous forest ecosystems, such as those found in
Amazonia [107], and therefore can be used as input or to initialize vegetation models [108].
For instance, Longo et al. [109] have used lidar to obtain initial conditions for an ecosystem
model that requires an initial state for forest structure. Their method to derive the vertical
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structure of the canopy from high-resolution airborne lidar successfully characterized the
diversity of forest structure variability caused by human-induced forest degradation
(such as logging and fire).

This new approach has strong implications on modeling recovery time and the suc-
cessional trajectories of the Amazonian disturbed forest because it does not require any
assumption on the successional stage of the forest, but only the vertical distribution of
returns. Moreover, it could be adapted to space-borne lidar data, including NASA’s
Global Ecosystem Dynamics Investigation (GEDI, [110]). Fusion of GEDI and optical data
[111] will further expand the spatial extent of available lidar data and potentially provide
tools capable of mapping drought, fire and logging impacts helping models to assess re-
covery time. Moreover, integration of GEDI with either optical or radar [112] wall-to-wall
data could allow large-scale characterization of forest ecosystems structure providing ac-
curate measurements of biomass stock that could be used for assessing recovery time via
repeated measurements.

5. Conclusions

This study shows how forest growth models can be used as tools for complementing
field-based studies on recovery time by investigating the spatial and temporal dynamics
and processes of forest recovery. Indeed, our biomass recovery map illustrates both spa-
tial and climatic variability in carbon sequestration potential due to forest re-growth. By
mapping potential for biomass recovery across Amazonia, policy makers could focus their
efforts on specific areas that require special protection and need to be preserved. Moreo-
ver, such recovery maps could also help by identifying areas with higher carbon seques-
tration potential thus supporting policies and concrete actions to mitigate forest degrada-
tion in areas where biomass resilience is under increasing stress (such as southeastern
Amazonia). The capability and timing of forest recovery after drought, fire and logging
are urgent and hot topics for applied research calling upon conservation and policy ac-
tions in Amazonia. Future changes in fire regimes could push some Amazonian regions
into a permanently drier climate regime and weaken the resilience of the region to possi-
ble large-scale drought—fire interactions driven by climate change. We are far from an in-
tegrated view of forest recovery processes, yet the results presented in this study may
provide some new insights about forest recovery time after disturbances. The conse-
quences that an extreme climatic event, such as a drought, may cause in the forest can
result in a net loss of ecosystem services compromising these ecosystems dynamics in the
long term. As a major result of projected increases in fire and drought frequency and in-
tensity in the region, Amazonian forest resilience appears, in the medium and long term,
to be severely jeopardized.
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4907/12/1/8/s1. Figure S1. Pre-disturbance reference biomass map [44]. Figure S2. The ABG dynamic
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aboveground biomass (%) and recovery time in years to reach recovery threshold. Red dotted line
90% threshold and black dotted line 100% threshold. Table S1: Parameters description and their
values used in 3-PG model (modified from Hirsch et al., [48]). Table S2: Details of ALS data acqui-
sitions
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