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15 Abstract

16 Climate change is affecting natural ecosystems and society. Anticipating its impacts on vegetation 
17 resilience is critical to estimate the ecosystems’ response to global changes and the reliability of 
18 the related ecosystem services, to support mitigation actions, and to define proper adaptation 
19 plans. 

20 Here, we compute the Annual Production Resilience Indicator from gross primary production (GPP) 
21 data simulated by a large ensemble of state-of-the-art Earth System Models (ESMs) involved in 
22 the last Coupled Model Intercomparison Project (CMIP6) of the Intergovernmental Panel on 
23 Climate Change (IPCC). 

24 In the Sustainability (Taking the Green Road) and Middle of the Road scenarios (ssp126 and 
25 ssp245), the areas where vegetation shows increasing GPP resilience are wider than the areas 
26 with decreasing resilience. The situation drastically reverses in the Fossil-fuel Development (Taking 
27 the Highway) scenario (ssp585). Among the larger countries, Brazil is exposed to the highest risk 
28 of experiencing years with anomalously low GPP, especially in the Taking the Highway scenario.

29 Social Media Abstract
30 Mitigating climate change favors vegetation resilience. Large regions will be at risk otherwise. 
31
32 Introduction
33
34 The Sustainable Development Goals, formally embraced by the 2010 Conference of Parties, 
35 recognize the importance of ensuring conservation, restoration and sustainable use of terrestrial 
36 ecosystems and their services, and strengthening the resilience and adaptive capacity to climate-
37 related hazards (SDG 15 and SDG 13, respectively; United Nations 2016). Stable ecosystems, 
38 characterized by small variations from their average state despite changes in environmental 
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39 conditions, are indeed considered healthy and reliable in terms of the services they provide (MAE 
40 2005, Costanza et al. 2014). Ecosystems in good condition are necessary to secure the 
41 sustainability of human activities and human well-being (Maes et al., 2020). 

42 The concept of resilience is closely connected to ecosystem stability. Resilience has been defined 
43 either as the larger disturbance that a system can absorb without losing its structure, relationships 
44 and functionalities (Holling 1973, 1996, Walker et al. 2004, Yi and Jackson 2021) or as the time 
45 required by an ecosystem to recover and return back to the equilibrium state after a disturbance 
46 (Pimm 1984, Yi and Jackson 2021). These definitions - termed ‘ecological resilience’ and 
47 ‘engineering resilience’, respectively - are conceptually clear but do not directly provide a practical 
48 way to measure resilience (Morecroft et al. 2012, Scheffer et al. 2015). In fact, a quantitative 
49 estimation of resilience requires objective methods to identify and measure the external stresses 
50 and shocks (Meyer 2016). Also as a result of such indeterminacy, a large number of indicators was 
51 proposed to measure different aspects of resilience (De Keersmaecker et al. 2014, Scheffer et al. 
52 2015, Meyer 2016, Yi and Jackson 2021). Up to date, none of these methods has been used to 
53 evaluate vegetation resilience at the global level and in future climate scenarios yet.

54 Gross primary production (GPP)  — the total carbon fixation by plants — is a primarily important 
55 terrestrial ecosystem function, at the point that it was also considered to be strongly related to 
56 resilience itself (Moore et al. 1993, Stone et al. 1996, Bryant et al. 2019). Climate change is indeed 
57 expected to alter vegetation GPP resilience by potentially compromising the availability of water for 
58 vegetation in dry regions (Santini et al. 2014, Zampieri et al. 2019) and in general by increasing the 
59 frequency, amplitude and duration of extreme events that are detrimental for vegetation productivity 
60 (Dosio et al. 2018, Naumann et al. 2018). At the same time, the increase of atmospheric CO2 
61 concentration coming along with global warming is expected to bring positive effects in terms of  
62 vegetation photosynthetic rate (although acclimation should be also considered) i.e. the so called 
63 ‘CO2 fertilization effect’ (Sage and Kubian 2007) and water use efficiency (Peters et al. 2018).

64 Here, we used the Annual Production Resilience Indicator (Rp), defined as the squared mean 
65 annual GPP divided by its variance, which was recently proposed for a statistical evaluation of the 
66 production resilience of natural vegetation (Zampieri et al. 2019) and agricultural systems from 
67 annual production time-series (Zampieri et al. 2020b). Rp is a simple but powerful indicator with 
68 several interesting properties. Being inspired by the ecological definition of resilience, Rp is 
69 proportional to the amplitude of the largest disturbances that the system can absorb (measure by 
70 their rareness) and it is potentially consistent with the engineering definition (i.e. the return timing) 
71 as well (Zampieri 2021). It increases with diversity (number of species) and it accounts for memory 
72 effects, i.e., for perturbation recovery timings longer than a season (Zampieri et al. 2020b).

73 We compute the Annual Production Resilience Indicator from a new ensemble of about 480 Earth 
74 System Models (ESMs) simulations included in the Sixth Coupled Models Intercomparison Project 
75 (CMIP6, https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6) of the Intergovernmental Panel 
76 on Climate Change (IPCC). ESMs are global climate models with an explicit representation of 
77 carbon processes and cycling over land, atmosphere and the oceans (Dahan 2010, Randall et al. 
78 2019), allowing to explore future climate variability of vegetation GPP according to different 
79 greenhouse gases emission scenarios.

80 We quantify the relative changes in resilience of the GPP production with respect to period 1985-
81 2015 for the near and far future periods (2021-2050 and 2051-2100) under three scenarios of socio-
82 economical global changes, corresponding to different levels of greenhouse gases emissions and 
83 land-use (i.e., the Sustainability, the Middle of the Road, and the Fossil-fuel Development 
84 scenarios) and we compute country level statistics of the larger projected changes. 

85
86 Data and Methods
87
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88 The Annual Production Resilience Indicator (Rp), is based on two assumptions (Zampieri 2021). 
89 For annual producing systems such as agriculture or natural ecosystems that are sufficiently 
90 adapted to the environmental conditions and to the local climate, it is sensible to assume that the 
91 largest disturbances are rarer compared to the “normal” conditions (assumption 1) and that the 
92 largest disturbances result in larger impacts of the annual production values (assumption 2). Under 
93 such conditions, the size of the disturbance can be univocally measured by its rareness e.g. the 
94 return period of production anomalies (T*). Focusing on the production function only, the ecological 
95 resilience can be then simply measured by T*MAX, which is the return period of the largest adverse 
96 event that the system can cope with before losing completely the production ability. This approach 
97 is not sensitive to changes in composition and structure of the ecosystems, so it may allow for 
98 adaptation according to a more ‘modern’ interpretation of ecological resilience (Walker et al. 2004).

99 For homogeneous production systems, it can be demonstrated that T*MAX is proportional to the 
100 annual production resilience indicator, defined as:

101 (1) Rp = µ2 / σ2,

102 where µ is the mean and σ is the standard deviation of the annual production (see Appendix A). In 
103 case the annual production resilience indicator is evaluated over a region including bare ground, 
104 the indicator is sensitive to the vegetated portion only (Zampieri et al. 2019). 

105 It is interesting and potentially useful to disentangle the effects of changes in the mean and in the 
106 variability of GPP on the annual production resilience indicator. This can be accomplished by 
107 approximating the RP change with a first order 2D Taylor expansion of equation 1 as a function of 
108 the changes in the mean and in the standard deviation of GPP as follows:

109 (2) Rp_s = Rp_h + ΔRp,

110 where the s stands for “scenario”, the h stands for “historical”, and Δ represents the difference 
111 between two periods. 

112 (3) ΔRp ≃ ∂R / ∂µ · Δµ + ∂R / ∂σ · Δσ

113 where ∂ is the partial derivative. By computing the derivatives and dividing both members of 
114 equation 3 by Rp one obtains:

115 (4) ΔRp/Rp = 2Δµ/µ - 2Δσ/σ.

116 Thus, an indication on the changes induced by the mean and the variability on the production 
117 resilience may be obtained by comparing the projected relative changes of the mean and of the 
118 variability, using the same weight. Equation 4 provides a normalized indicator of such comparison:

119 (5)  (|Δµ/µ| - |Δσ/σ|) / (|Δµ/µ| + |Δσ/σ|), 

120 which varies from -1 (variability dominates) to +1 (mean dominates), which is useful to assess and 
121 compare the dominant relative changes in different locations.
122
123 In this study, RP  and its changes are computed on a large ensemble composed of all the climate 
124 change simulations for vegetation gross primary production available from all the Earth System 
125 Grid Federation (ESGF) portals up to 31st December 2019. The full list of simulations is provided 
126 in Table 1, along with the detailed reference to the land surface component of the Earth System 
127 Models. 

128 The ESMs land surface components include a prognostic representation of the biosphere with 
129 spatially distributed vegetation processes such as evapotranspiration, photosynthesis, carbon 
130 allocation and growth of leaves, stems and roots interacting with near surface meteorological 
131 variables such as temperature, radiation, wind and CO2 concentration, and soil variables such as 

Page 3 of 17 AUTHOR SUBMITTED MANUSCRIPT - ERL-111593.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



4

132 moisture, carbon and nitrogen (see references in Table 1). Therefore, GPP variability in ESMs is 
133 the result of both bio–geophysical and bio–geochemical processes such as soil moisture dynamics 
134 and energy budget, permafrost thawing, atmospheric CO2 fertilization and nitrogen limitation as 
135 well as land use changes defined as a function of the different future scenarios. Some of the models 
136 also include a simplified representation of abiotic stresses on vegetation, such as fires (Lawrence 
137 et al. 2019, Bastos et al. 2020). 

138 Memory effects linked to antecedent drought conditions are well reproduced since soil moisture 
139 dynamics and the related physical feedbacks were quite well developed already in the GCMs 
140 (Seneviratne et al. 2010), which are the predecessors of the ESMs and from which ESMs inherits 
141 the representation of abiotic processes. In general, ESMs provide a reasonable representation of 
142 the GPP response to drought (see citations in Table 1), which is, however, largely variable among 
143 models (Knauer et al. 2015, Huang et al. 2016, Orth et al. 2020). This motivates the use of a large 
144 ensemble for a robust assessment of GPP changes such as the one used here.   

145 The annual GPP is derived by summing up the monthly GPP outputs for each simulation listed in 
146 Table 1 consistently with the spatial variability of vegetation seasonality (Peano et al. 2019). The 
147 annual GPP data of each simulation is interpolated on a common 0.5 degrees regular grid with a 
148 second conservative remapping method (Jones 1999, Chen and Knutson 2008). The simulations’ 
149 ensemble mean Rp is computed for each ESMs and for each period and scenario. Finally, the 
150 overall median of the RP changes with respect to the historical period is computed for each future 
151 period and scenario. The robustness of the results is assessed by highlighting the areas where at 
152 least 75% of the models agree on the sign of changes. 

153
154 Results
155
156 Future climate projections display significant changes of GPP variability resilience (Fig. 1) 
157 compared to period 1985-2014. The annual vegetation primary production resilience indicator is 
158 anticipated to generally increase in the lower emission scenarios (ssp126 and ssp245, Fig. 1 a,b,c, 
159 and d, respectively). The larger positive changes are expected to occur especially in the snow 
160 dominated bioclimatic regions (see Table S2). The amplitude and the area covered by these 
161 changes are comparatively larger in the ssp245 scenario than in the ssp126 scenario and increase 
162 with time towards the end of the 21st century (Table 2). Positive changes are also estimated for 
163 Central Africa and the Sahel regions, India and over the Himalayan Plateau. However, regions with 
164 loss of GPP resilience appear as well, especially in Brazil, China and surrounding countries of 
165 equatorial America. Under the ssp245 socio-economic scenario, the CMIP6 ESMs project 
166 resilience losses also in Mexico and the southern part of the US, the Mediterranean region, 
167 Southern Africa and Australia. This occurs not only in the far future ( 2051-2100, Fig. 1d), but also 
168 in the near future (2021-2050; Fig. 1c).

169 - Figure 1 -

170 Under moderate emission scenarios (ssp126 and ssp245), about one third of land area is going to 
171 experience an increase of vegetation annual GPP resilience over the period 2021-2050 (see Table 
172 2). This proportion is slightly lower, about one forth, when considering only the areas where 75% 
173 of the models agree on the sign of changes. Differently, the area with positive changes will cover 
174 almost half of the global land area (less than one third when the constraint on models’ agreement 
175 is introduced) over the period 2051-2100. Regions losing resilience cover a smaller percentage of 
176 the global area, about 10% under ssp245 in the near future period. The differences between the 
177 plain estimate and the one constrained on models’ agreement become negligible for variations of 
178 resilience higher than 15% (Table 2). 

179 The results for the ssp585 scenario stand out significantly compared to the lower emission 
180 scenarios. Broad areas with negative change (i.e. loss of vegetation GPP resilience) appear 
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181 already in the period 2021-2050 (Fig. 1e) in the Amazon region, the Unites States, South Canada, 
182 Western Europe, the Mediterranean basin, as well as in the Middle east, Central, Western and 
183 Southern Africa, Southeast Asia and China, and Oceania. Areas with at least 5% loss of vegetation 
184 GPP resilience are projected to cover approximately one fifth of the global land (12% considering 
185 models’ agreement); while areas with more than 15% losses are projected to be limited to 3%. 
186 Positive gains of vegetation GPP resilience in boreal regions are simulated to be more limited with 
187 respect to the lower emission scenarios. Gains of at least 5% are expected to cover about one 
188 fourth of the global areas (15% considering models’ agreement); while areas with changes larger 
189 than 15% are limited to the 6%, similarly to the ssp126 scenario.

190 The severity of the projected losses is expected to further exacerbate in the period 2051-2100. In 
191 the Taking the Highway scenario, less and less regions are expected to experience gains in 
192 vegetation GPP resilience. These regions are: La Plata basin in Argentina, part of the Sahel region, 
193 Eastern Africa, Western India, North-western China and some regions along the coast of the Arctic 
194 Sea. In general, areas gaining at least 5% resilience are simulated to be limited to 14% (8% 
195 considering model agreement) of global areas, while regions with more than 15% increase of 
196 vegetation primary production resilience are limited globally to 6% of the land area. The areas 
197 losing resilience are expected to outbalance those ones increasing resilience and cover 43% (25% 
198 considering models agreement) of global land area with more than 5% resilience losses. Globally, 
199 13% of land areas are predicted to lose more than 15 % vegetation primary production resilience. 

200 - Figure 2 -

201 The GPP resilience changes can be driven either by the change in the GPP mean and by the 
202 changes in the GPP variability due to climate change (see Methods). Positive resilience changes 
203 in the near future under moderate emission scenarios are often linked to positive changes in the 
204 mean annual GPP (Fig. 2a,b,c,d,e, S4) connected to overall higher levels of atmospheric CO2 
205 concentration and to higher mean growing temperature in Boreal Regions. Negative resilience 
206 changes are generally associated to an increase in the  interannual variability of GPP (see Fig. S5). 
207 The areas affected by an increase of variability largely change across the scenarios and reach their 
208 maximum extent under the scenario ssp585 (Fig. 2e,f, S5e,f). 

209 - Figure 3 -

210 Gain and losses of resilience are quantified at the national level in order to provide country-specific 
211 information for adaptation options, and possibly to support ambitious mitigation policies. This 
212 analysis is displayed in Figure 3 for the ten largest countries (and in Table S3 for all World 
213 countries). Russia is characterized by the widest gains of resilience, which could cover almost 70% 
214 of the country area in the period 2051-2100 under the ssp245 scenario. The spatial extent of areas 
215 expected to experience gains is reduced up to about 15% in the near future under the ssp585 
216 scenario. This tendency continues towards the end of the century, under the ssp585 scenario, 
217 when also areas with GPP resilience losses start to appear. Canada shows a similar picture, but 
218 with less optimistic estimation of predicted losses largely outbalancing the gains in the 2051-2100 
219 period under the ssp585 scenario. The US and China display similar figures, with gains predicted 
220 to reach 20% in the low emission scenarios (ssp126 and ssp245) and losses ranging from 10% to 
221 15% in the ssp585 over the period 2051-2100. Among the largest countries, Brazil is the one 
222 characterized by the worst projections, with the risk of losing resilience in 50% of its total territory 
223 under the ssp585 scenario at the end of the 21st Century. It is worth noting that these changes are 
224 likely to represent an underestimation as the current trend of land-use change (Freitas et al. 2018)  
225 is only partially considered in the ESMs (Hurtt et al. 2020). Australia is estimated to undergo 
226 negligible losses, also because over desert and arid areas resilience changes are proportionally 
227 small. Nevertheless, Australia will experience comparatively large losses of resilience towards the 
228 end of the century under the ssp585 scenario. The European Union is characterized by a more 
229 stable situation with significant positive changes only under the ssp245 scenario over the period 
230 2051-2100. India shows projections similar to the EU, but with significant areas of vegetation that 
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231 both gain and lose resilience under the high emission scenario at the end of the 21st Century. Large 
232 positive and negative changes in resilience are also estimated for Argentina under the high 
233 emission scenario (2051-2100). Whether or not these compensating changes in different area are 
234 beneficial for the countries’ adaptive capacity could be subject of specific follow-up investigations.

235 Results for the remaining World countries (see Table S3) allow identifying severe cases, such as 
236 losses of resilience higher than 15% over more than 50% of the area under the ssp585 scenario 
237 over the period 2051-2100 in Gabon, Bhutan, Venezuela, Equatorial Guinea, Malaysia, Peru, 
238 Guyana, Lebanon, Japan, Congo, Bolivia, Honduras, Zambia, South Korea, Papua Nuova Guinea 
239 and other 16 countries. Under the same scenario, the list of ‘winner’ countries is much shorter, with 
240 only Somalia gaining at least 15% resilience over more than 50% of its territory. Countries having 
241 the largest benefit under the ssp245 scenario at the end of the century are Russia and the ones in 
242 Northern Europe. Under the ssp126 scenario, the benefits are geographically spread into more 
243 continents. In both ssp126 and ssp245 scenarios, there are almost no countries experiencing more 
244 than 15% losses of resilience over 10% of their land.

245 Discussion and Conclusions
246
247 This study implements a simple and robust statistical indicator, the Annual Production Resilience 
248 Indicator (Rp), able to provide bulk estimation of ecological resilience from annual production time-
249 series. Being focused on production, Rp is not sensitive to changes in ecosystem structure and 
250 other state variables that play a fundamental part in Holling’s definition of ecological resilience 
251 (Holling 1973). Conversely, it is formally consistent with more modern conception of resilience 
252 allowing adaptation and other changes in ecosystem structure in a resilience framework (Walker et 
253 al. 2004). Other indicators based on higher temporal resolution data could be employed as well in 
254 order to assess more detailed aspects of resilience in a non-linear dynamics framework (Yi and 
255 Jackson 2021). However, Rp already provides a quick and useful indication of the changes in 
256 statistical stability of the production time series in different periods, and it is especially suitable for 
257 being computed on large data volumes. Here, the vegetation GPP resilience changes are estimated 
258 with reference to the climate variability simulated by a large ensemble of state-of-the-art Earth 
259 System Models (ESMs). 
260
261 While the main properties of Rp are already demonstrated (Zampieri et al. 2019, 2020b, Zampieri 
262 2021), here we also present an interesting decomposition of the resilience changes in terms of the 
263 mean GPP and its variability. This assessment is potentially useful for adaptation planning that 
264 should presumably account differently for the changes in the mean with respect to the changes in 
265 variability of vegetation GPP in the future climate projections (MEARNS et al. 1997, Smit et al. 
266 2000, van der Wiel and Bintanja 2021) . However, the implication of the estimated GPP resilience 
267 changes and of their drivers need to be interpreted and confirmed through dedicated local-scale 
268 assessments, also identifying the specific drivers of the changes. However, this needs to be 
269 discussed case by case as well. For instance, while gains in resilience could be generally 
270 considered a positive feature in dry environments, the implication in wet environment and over high 
271 latitudes should be further investigated considering more complex approaches (Drews and 
272 Greatbatch 2017, Laamrani et al. 2020). 

273 Our results aim at providing a useful first-order indication that surely needs to be corroborated with 
274 further dedicated studies estimating also the specific drivers of resilience and accounting for the 
275 different natural and socio-economic perspectives. However, the analysis presented here is 
276 potentially very useful to identify the world regions where there might be losses of vegetation GPP 
277 resilience as well as the countries that are subject to the most urgent necessity of improving 
278 adaptive capacity and resilience to climate-related hazards under different future climate scenarios. 

279 Our results show large differences in the changes of GPP resilience across the globe, depending 
280 on greenhouse gases concentration of the projected scenarios. Under low emission scenarios, as 
281 found in previous studies (Hubau et al. 2020), the CO2 fertilization effect often prevail over the 
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282 negative effect due global warming (e.g. an increase in metabolic costs which in turn would lead to 
283 a reduction in forest productivity and their efficiency, (Collalti et al. 2020)) and to the increase of 
284 climate variability. These results are in general agreement with the observed changes in vegetation 
285 distribution that are already observed especially in boreal regions (Myneni et al. 1997). This 
286 tendency is expected to increase in the future climate scenarios, especially those with higher 
287 greenhouse gases and radiative forcing increases (Zampieri and Lionello 2010). However, 
288 radiation will always be a limiting factor for the vegetation adaptation at very high latitudes (Seddon 
289 et al. 2016).

290 The main findings point to areas in the mid-latitudes where vegetation resilience is estimated to 
291 decrease in the higher emission scenarios, such as the Mediterranean, the mid-West in the US, 
292 Central America, part of China, Southern Africa and Australia. This tendency might compromise 
293 the stability of agricultural production and the reliability of ecosystem services provided by the 
294 natural vegetation in these regions, unless sensible adaptation actions are taken. The relevance of 
295 mitigation is most evident under the higher emission scenarios, where vegetation resilience is 
296 affected in most land areas and especially in tropical regions, where society is highly dependent 
297 on ecosystem services and more vulnerable to climatic changes.

298 The results of our analysis strongly support the SDG-13 on taking action to combat climate change 
299 and its impacts. Over areas with a high level of anthropization, our results are relevant for 
300 agricultural production, which is a main source of employment, livelihood and income for a large 
301 portion of population especially in developing countries (SDG-1, no poverty) as well as a main food 
302 source (SDG-2, no hunger). Our results are also relevant for the SDG-15, on the sustainable 
303 management of ecosystems and halting land degradation and biodiversity loss. 
304
305 Overall, in the scenario with lower mitigation (i.e. the Fossil-fuel Development scenario), the areas 
306 losing vegetation resilience are more than the ones gaining resilience, jeopardizing the stability of 
307 the ecosystems structure (and of the related services). Adapting to changes in variability more than 
308 to changes in the mean production of vegetation will be critical for society and natural ecosystems 
309 in areas experiencing vegetation GPP resilience losses. 
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520
521 Figures and Tables
522
523

524

525

526

527

528 Figure 1. Global changes of annual gross primary production resilience (Rp) computed from an 
529 ensemble of 16 Earth System Models (ESMs) simulations under ssp126 (panels a and b), ssp245 
530 (panels c and d), and ssp585 (panels e and f) CMIP6 scenarios in the periods 2021-2050 (panels 
531 a, c, and e) and 2051-2100 (panels b, d, and f) compared to the period 1985-2014.
532
533
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534

535

536

537

538
539 Figure 2. Ensemble mean share of the two factors triggering changes in the vegetation annual 
540 production resilience indicator (as from eq. 5, see Methods). Positive values (light and dark blue 
541 areas) point to changes in the resilience indicator mainly due to changes in the mean GPP. 
542 Negative values (red and yellow areas) are associated with grid points where the changes in the 
543 resilience indicator are mainly driven by changes in the GPP variability.
544
545
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546

547

548 Figure 3. Percentages of area with more than 15% annual GPP resilience change for the ten wider 
549 countries, Russia (RUS), Canada (CAN), the United States of America (USA), China (CHN), Brazil 
550 (BRA), Australia (AUS), the European Union (EUR), India (IND), Kazakhstan (KAZ), and Argentina 
551 (ARG). Negative values refer to the percentage of areas with negative GPP resilience changes.
552
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553
554
555 Table 1. Earth System Model (ESMs) simulations producing the annual gross primary production 
556 (GPP) data used in this study; with information on: modules delegated to the representation of 
557 land surface processes and GPP simulations (and associated reference publications); number of 
558 simulations available up to 31st December 2019 for the historical period and for ssp126, ssp245 
559 and ssp585 future scenarios.
560

ESM Land Model historical ssp126 ssp245 ssp585
ACCESS-ESM-5 CABLE w/Carbon cycle (De 

Kauwe et al. 2015)
1 1 1 1

CESM2-WACCM CLM5 (Lawrence et al. 2019) 3 1 1 1
CESM2 CLM5 (Lawrence et al. 2019) 10 2 3 2
CNRM-CM6-1 ISBA with fixed LAI monthly 

climatology (Garrigues et al. 
2015a, 2015b)

30 1 6 6

CNRM-ESM-1 ISBA with interactive LAI 
(Garrigues et al. 2015b, 2015a)

7 1 5 5

CanESM5-
CanOE

CLASS-CTEM (Arora and 
Scinocca 2016)

3 3 3 3

CanESM5 CLASS-CTEM (Arora and 
Scinocca 2016)

50 50 50 50

EC-Earth3-Veg LPJ-GUESS v4 (Forrest et al. 
2018)

4 3 3 3

INM-CM4-8 no name (Volodin et al. 2017) 1 1 1 1
INM-CM5-0 no name5 10 1 1 1
IPSL-CM6A-LR ORCHIDEE (Chen et al. 2016) 30 1 9 6
MIROC-ES2L VISIT-e (Ito and Inatomi 2011) 3 1 1 1
MPI-ESM1-2-HR JSBACH (Reick et al. 2013) 10 2 2 2
MPI-ESM2-2-LR JSBACH (Reick et al. 2013) 10 10 10 10
NorESM2-LM GFDL-LM3.0 (Gerber et al. 2010) 3 1 3 1
UKEMS1-0-LL JULES (Harper et al. 2016) 19 5 4 5
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564
565
566 Table 2. Fraction of global land area where the relative resilience indicator (ΔRp/Rp) exceeds 
567 different thresholds (5%; 10%; 15%; 20%) in the simulation ensemble median. The first estimation 
568 (third and fourth columns) considers all areas displaying changes larger than the thresholds. A 
569 second estimate (fifth and sixth columns) is restricted to the areas where at least the 75% of the 
570 models agree on the sign of changes. 
571

Fraction of land area 
with changing resilience

Fraction of land area 
considering 75% models’ 

agreement  
Period Scenario ΔRp/Rp>5% ΔRp/Rp<5% ΔRp/Rp>5% ΔRp/Rp<5%
2021-
2050

ssp126
ssp245
ssp585

31%
35%
24%

2%
9%

21%

25%
27%
15%

1%
4%

12%
2051-
2100

ssp126
ssp245
ssp585

41%
48%
14%

3%
8%

43%

36%
27%
8%

1%
4%

25%
ΔRp/Rp>10% ΔRp/Rp<10% ΔRp/Rp>10% ΔRp/Rp<10%

2021-
2050

ssp126
ssp245
ssp585

15%
21%
12%

0%
2%
8%

13%
19%
9%

0%
1%
6%

2051-
2100

ssp126
ssp245
ssp585

27%
35%
8%

0%
2%

27%

26%
30%
6%

0%
1%

20%
ΔRp/Rp>15% ΔRp/Rp<15% ΔRp/Rp>15% ΔRp/Rp<15%

2021-
2050

ssp126
ssp245
ssp585

7%
12%
6%

0%
0%
3%

7%
11%
5%

0%
0%
2%

2051-
2100

ssp126
ssp245
ssp585

20%
26%
5%

0%
0%

13%

19%
25%
4%

0%
0%

12%
ΔRp/Rp>20% ΔRp/Rp<20% ΔRp/Rp>20% ΔRp/Rp<20%

2021-
2050

ssp126
ssp245
ssp585

3%
6%
3%

0%
0%
0%

3%
6%
2%

0%
0%
0%

2051-
2100

ssp126
ssp245
ssp585

14%
20%
3%

0%
0%
6%

14%
20%
2%

0%
0%
5%
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